scholarly journals Tracing Circumpolar Deep Water and glacial meltwater using humic-like fluorescent dissolved organic matter in the Amundsen Sea, Antarctica

2021 ◽  
pp. 104008
Author(s):  
Mi Hae Jeon ◽  
Jinyoung Jung ◽  
Mi Ok Park ◽  
Shigeru Aoki ◽  
Tae-Wan Kim ◽  
...  
2017 ◽  
Vol 47 (4) ◽  
pp. 933-954 ◽  
Author(s):  
Louise C. Biddle ◽  
Karen J. Heywood ◽  
Jan Kaiser ◽  
Adrian Jenkins

AbstractPine Island Ice Shelf, in the Amundsen Sea, is losing mass because of warm ocean waters melting the ice from below. Tracing meltwater pathways from ice shelves is important for identifying the regions most affected by the increased input of this water type. Here, optimum multiparameter analysis is used to deduce glacial meltwater fractions from water mass characteristics (temperature, salinity, and dissolved oxygen concentrations), collected during a ship-based campaign in the eastern Amundsen Sea in February–March 2014. Using a one-dimensional ocean model, processes such as variability in the characteristics of the source water masses on shelf and biological productivity/respiration are shown to affect the calculated apparent meltwater fractions. These processes can result in a false meltwater signature, creating misleading apparent glacial meltwater pathways. An alternative glacial meltwater calculation is suggested, using a pseudo–Circumpolar Deep Water endpoint and using an artificial increase in uncertainty of the dissolved oxygen measurements. The pseudo–Circumpolar Deep Water characteristics are affected by the under ice shelf bathymetry. The glacial meltwater fractions reveal a pathway for 2014 meltwater leading to the west of Pine Island Ice Shelf, along the coastline.


2017 ◽  
Vol 74 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Ken Arai ◽  
Shigeki Wada ◽  
Koichi Shimotori ◽  
Yuko Omori ◽  
Takeo Hama

2020 ◽  
Vol 27 (28) ◽  
pp. 35712-35723
Author(s):  
Angélique Goffin ◽  
Laura Alejandra Vasquez-Vergara ◽  
Sabrina Guérin-Rechdaoui ◽  
Vincent Rocher ◽  
Gilles Varrault

Chemosphere ◽  
2019 ◽  
Vol 227 ◽  
pp. 17-25 ◽  
Author(s):  
Zahra Zahra ◽  
Tahir Maqbool ◽  
Muhammad Arshad ◽  
Mohsin Ali Badshah ◽  
Hyung-Kyoon Choi ◽  
...  

Ocean Science ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 1071-1090 ◽  
Author(s):  
Sinikka T. Lennartz ◽  
Marc von Hobe ◽  
Dennis Booge ◽  
Henry C. Bittig ◽  
Tim Fischer ◽  
...  

Abstract. Oceanic emissions of the climate-relevant trace gases carbonyl sulfide (OCS) and carbon disulfide (CS2) are a major source to their atmospheric budget. Their current and future emission estimates are still uncertain due to incomplete process understanding and therefore inexact quantification across different biogeochemical regimes. Here we present the first concurrent measurements of both gases together with related fractions of the dissolved organic matter (DOM) pool, i.e., solid-phase extractable dissolved organic sulfur (DOSSPE, n=24, 0.16±0.04 µmol L−1), chromophoric (CDOM, n=76, 0.152±0.03), and fluorescent dissolved organic matter (FDOM, n=35), from the Peruvian upwelling region (Guayaquil, Ecuador to Antofagasta, Chile, October 2015). OCS was measured continuously with an equilibrator connected to an off-axis integrated cavity output spectrometer at the surface (29.8±19.8 pmol L−1) and at four profiles ranging down to 136 m. CS2 was measured at the surface (n=143, 17.8±9.0 pmol L−1) and below, ranging down to 1000 m (24 profiles). These observations were used to estimate in situ production rates and identify their drivers. We find different limiting factors of marine photoproduction: while OCS production is limited by the humic-like DOM fraction that can act as a photosensitizer, high CS2 production coincides with high DOSSPE concentration. Quantifying OCS photoproduction using a specific humic-like FDOM component as proxy, together with an updated parameterization for dark production, improves agreement with observations in a 1-D biogeochemical model. Our results will help to better predict oceanic concentrations and emissions of both gases on regional and, potentially, global scales.


Sign in / Sign up

Export Citation Format

Share Document