urban sewage
Recently Published Documents





Biosensors ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 45
Xia Hong ◽  
Yin Cui ◽  
Ming Li ◽  
Yifan Xia ◽  
Daolin Du ◽  

A magnetic-based immunoassay (MBI) combined with biotin-streptavidin amplification was proposed for butyl benzyl phthalate (BBP) investigation and risk assessment. The values of LOD (limit of detection, IC10) and IC50 were 0.57 ng/mL and 119.61 ng/mL, with a detection range of 0.57–24977.71 ng/mL for MBI. The specificity, accuracy and precision are well demonstrated. A total of 36 environmental water samples of urban sewage from Zhenjiang, China, were collected and assessed for BBP contamination. The results show that BBP-positive levels ranged from 2.47 to 89.21 ng/mL, with a positive rate of 77.8%. The health effects of BBP in the urban sewage were within a controllable range, and the ambient severity for health (ASI) was below 1.49. The highest value of AS for ecology (ASII) was 7.43, which indicates a potential harm to ecology. The entropy value of risk quotient was below 100, the highest being 59.47, which poses a low risk to the environment and ecology, indicating that there is a need to strengthen BBP controls. The non-carcinogenic risk of BBP exposure from drinking water was higher for females than that for males, and the non-carcinogenic risk from drinking-water and bathing pathways was negligible. This study could provide an alternative method for detecting BBP and essential information for controlling BBP contamination.

2022 ◽  
pp. 113-127
T.N. Moraes ◽  
D.O. Guilherme ◽  
P.S. Cavalheri ◽  
F.J.C. Magalhães Filho

Xin Li ◽  
Jian Huang ◽  
Chunwei Li ◽  
Ning Luo ◽  
Wen Lei ◽  

With considering sewage pipe network upgrading projects in the “villages” in cities, the optimization of construction resources and the assessment of delay risks could be achieved. Based on the schedule-cost hypothetical theory, the mathematical model with constraint indicators was established to obtain the expression of optimal resource input, and conclude the method to analyze the schedule uncertainties. The analysis showed that cyclical footage of pipe could be regarded as a relatively fixed value, and the cost can be regarded as a function that depending on the number of working teams. The optimal number of teams and the optimal schedule occurred when the minimum total cost achieved. In the case of insufficient meteorological data, the Monte Carlo simulation method and uncertainty analysis method can be applied to assess the impact of rainfall on the total construction period, correspondingly the probability of such risk could be derived. The calculation showed that the risk of overdue completion varied significantly according to the construction starting time. It was necessary to take rainfall risk into consideration and make corresponding strategies and measures.

2021 ◽  
Kequan Zhang ◽  
Qian Fang ◽  
Yihan Xie ◽  
Yujia Chen ◽  
Tong Wei ◽  

Abstract Polyhydroxyalkanoate (PHA) is a new type of bio-polyester which is expected to replace traditional petroleum-based plastics. It is also a critical transformation hub of carbon source in nitrogen and phosphorus removal in sewage. Based on the anaerobic-oxygen limited process, the experiment took organic solid waste fermentation liquid as carbon source control hub and realized PHA synthesis and recovery in denitrification and phosphorus removal from low carbon sewage the SBR reactor by regulating pH value and nitrogen and phosphorus restriction. The experimental results showed that when the ratio of C/N and C/P was 150, the content of PHA accounted for 50.39% and 36.07 of the dry cell weight, respectively. Besides, it was found that increasing the C/N ratio was beneficial to increasing the proportion of PHV in PHA. This study proved the feasibility of using an anaerobic-oxygen limited process to recover PHA in nitrogen and phosphorus removal from low-carbon sewage, which saves gas and reduces energy consumption. At the same time, it also provides some help for the follow-up study of low-carbon urban sewage nitrogen and phosphorus removal coupled with resource recovery of PHA to guide the water industry economy to develop in a circular and sustainable direction

2021 ◽  
Vol 297 ◽  
pp. 113355
Sarra Hechmi ◽  
Helmi Hamdi ◽  
Sonia Mokni-Tlili ◽  
Rahma Inès Zoghlami ◽  
Mohamed Naceur Khelil ◽  

2021 ◽  
Vol 13 (19) ◽  
pp. 10935
Juan A. Conesa

With the objective of suppressing dioxins and furans (PCDD/Fs) emission in municipal solid waste incineration plants (MSWI), different chemical inhibitors have been tested. Among these inhibitors, nitrogen and sulphur compounds can significantly suppress PCDD/Fs formation via de novo synthesis, which gives very interesting results with very little capital investment. In recent years, the possibility of using waste rich in nitrogen and/or sulphur as a source of inhibitor compounds has been considered, and thus has reduced the emissions of pollutants while the waste is treated. The effect of adding sludge from urban sewage treatment plants in three variants has been specially studied: directly mixing the waste, using the decomposition gas of the previously dried sludge, and using the decomposition gas of the sludge together with other inhibitors such as thiourea. Reduction of emissions in laboratory tests using model samples indicated the efficiency to be higher than 99%, using sewage sludge (SS) as an inhibitor whereas, in actual MSWI plants, the efficiency can be as high as 90%.

Sign in / Sign up

Export Citation Format

Share Document