inner filter effect
Recently Published Documents


TOTAL DOCUMENTS

347
(FIVE YEARS 164)

H-INDEX

45
(FIVE YEARS 13)

Author(s):  
Ali Ghafarloo ◽  
Reza Sabzi ◽  
Naser Samadi ◽  
Hamed Hamishehkar

Synthesis of carbon dots (CDs) from natural resources not only enables green synthesis and production of environmentally friendly materials, but also provides a cost-effective probe as a fluorescence nanosensor. The proposed sensor introduces a unique one-pot hydrothermal CDs synthesis from alfalfa leaves, which is promising for sensing hydrochlorothiazide (HCTZ) via inner filter effect (IFE) and resonance Rayleigh scattering (RRS). The as-prepared CDs had wide emission spectra, excitation-dependent emission, high solubility, high stability, and visible fluorescence light with a quantum yield of up to 11%. The absorption of HCTZ overlapped with the excitation spectra of CDs. Therefore, CDs represented excellent quenching due to IFE when HCTZ was gradually added. Furthermore, this fluorescent sensor was successfully used to quantify HCTZ in the linear ranges (0.17-2.50 μg mL-1) with the limit of detection of 0.11 μg mL-1. The sensing system was simple as no surface functionalization was required for CDs, leading to less laborious steps and more cost-effective synthesis. The reaction time was short, i.e., less than 2 min, indicating a simple approach for rapid analysis of HCTZ. By optimizing conditions, successful measurements were carried out on pharmaceutical tablets.


2022 ◽  
Author(s):  
Huarui Nan ◽  
Yunhai Liu ◽  
Wenjuan Gong ◽  
Hongbo Peng ◽  
Youqun Wang ◽  
...  

In this work, a ratiometric fluorescence system was designed for detection of trace UO22+ in water based on inner filter effect (IFE) between gold nanoparticles (AuNPs) and gold nanoclusters (AuNCs)....


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 128
Author(s):  
Lei Jia ◽  
Zhitao Xu ◽  
Rujie Chen ◽  
Xiangzhen Chen ◽  
Jun Xu

Tetracycline (TC) and oxytetracycline (OTC) are the most widely used broad-spectrum antimicrobial agents in tetracycline drugs, and their structures and properties are very similar, so it is a great challenge to distinguish and detect these two antibiotics with a single probe at the same time. Herein, a dual-channel fluorescence probe (SiCDs@mMIPs-cit-Eu) was developed by integrating two independent reaction sites with SiCDs-doped mesoporous silica molecular imprinting group and europium complex group into a nanomaterial. The synergistic influence of inner filter effect and “antenna effect” can be guaranteed to solve the distinction between TC and OTC. Moreover, this novel strategy can also sequentially detect TC and OTC in buffer solution and real samples with high sensitivity and selectivity. This method revealed good responses to TC and OTC ranging from 0 to 5.5 μM with a detection limit of 5 and 16 nM, respectively. Combined with the smartphone color-scanning application, the portable and cheap paper-based sensor was designed to realize the multi-color visual on-site detection of TC and OTC. In addition, the logic gate device was constructed according to the fluorescence color change of the probe for TC and OTC, which provided the application possibility for the intelligent detection of the probe.


2021 ◽  
Vol 23 (1) ◽  
pp. 190
Author(s):  
Thi-Hoa Le ◽  
Ji-Hyeon Kim ◽  
Sang-Joon Park

Glutathione (GSH) is a thiol that plays a significant role in nutrient metabolism, antioxidant defense and the regulation of cellular events. GSH deficiency is related to variety of diseases, so it is useful to develop novel approaches for GSH evaluation and detection. In this study we used nitrogen and phosphorus co-doped carbon dot-gold nanoparticle (NPCD–AuNP) composites to fabricate a simple and selective fluorescence sensor for GSH detection. We employed the reductant potential of the nitrogen and phosphorus co-doped carbon dots (NPCDs) themselves to form AuNPs, and subsequently NPCD–AuNP composites from Au3+. The composites were characterized by using a range of spectroscopic and electron microscopic techniques, including electrophoretic light scattering and X-ray diffraction. The overlap of the fluorescence emission spectrum of NPCDs and the absorption spectrum of AuNPs resulted in an effective inner filter effect (IFE) in the composite material, leading to a quenching of the fluorescence intensity. In the presence of GSH, the fluorescence intensity of the composite was recovered, which increased proportionally to increasing the GSH concentration. In addition, our GSH sensing method showed good selectivity and sensing potential in human serum with a limit of detection of 0.1 µM and acceptable results.


2021 ◽  
Vol 21 (12) ◽  
pp. 6024-6034
Author(s):  
Yan Li ◽  
He-Ping Yang ◽  
Shu Chen ◽  
Xiang-Jiang Wu ◽  
Yun-Fei Long

Carbon dots have good biocompatibility, low toxicity, excellent photoluminescence properties, and good light stability, endowing them good application prospects in drug detection, chemical analysis, drug delivery, and other fields. In this study, p-phenylenediamine was used as the carbon source, and carbon dots were synthesized in hydrochloric acid medium using microwave method. When the excitation wavelength is about 300 nm, a strong emission peak of 689 nm is detected for the synthesized carbon dots. Carbon dots’ size is about 4.0±0.2 nm, and the carbon dots with spherical shape are uniformly distributed. The quantum yield of carbon dots is 8.07%. In addition, cephalosporins. were detected and analyzed using synthetic carbon dots. The results show that the presence of cephalosporins reduced the fluorescence intensity of carbon dots, and the reduced fluorescence intensity of the synthesized carbon dots showed a linear correlation with the cephalosporins’ concentration. Cephalosporins’ detection scope is 0.2 μmol/L to 80 μ mol/L, and the detection limit is 0.084 μ mol/L. A mechanism study shows that the effect of cephalosporins on carbon dot’s fluorescence intensity can be attributed to the inner filter effect of cephalosporins. On this basis, a sensitive and 0selective cephalosporins detection method was established. Furthermore, this established method for cephalosporins detection was applied to real samples, resulting in a low relative standard deviation (RSD) and good recoveries.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2647
Author(s):  
Ai-Fen Ou ◽  
Zi-Jian Chen ◽  
Yi-Feng Zhang ◽  
Qi-Yi He ◽  
Zhen-Lin Xu ◽  
...  

Aristolochic acid (AA) toxicity has been shown in humans regarding carcinogenesis, nephrotoxicity, and mutagenicity. Monitoring the AA content in drug homologous and healthy foods is necessary for the health of humans. In this study, a monoclonal antibody (mAb) with high sensitivity for aristolochic acid I (AA-I) was prepared. Based on the obtained mAb, a chemiluminescent immunoassay (CLEIA) against AA-I was developed, which showed the 50% decrease in the RLUmax (IC50) value of 1.8 ng/mL and the limit of detection (LOD) of 0.4 ng/mL. Carbon dots with red emission at 620 nm, namely rCDs, were synthesized and employed in conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) to improve the assay sensitivity of a fluoroimmunoassay (FIA). Oxidized 3,3′′,5,5′′-tetramethylbenzidine dihydrochloride (oxTMB) can quench the emission of the rCDs through the inner-filter effect; therefore, the fluorescence intensity of rCDs can be regulated by the concentration of mAb. As a result, the assay sensitivity of FIA was improved by five-fold compared to CLEIA. A good relationship between the results of the proposed assays and the standard ultra-high performance liquid chromatography-triple quadrupole mass spectrometer (UPLC-QQQ-MS/MS) of real samples indicated good accuracy and practicability of CLEIA and FIA.


Sign in / Sign up

Export Citation Format

Share Document