Occurrence and emissions of volatile sulfur compounds in the Changjiang estuary and the adjacent East China Sea

2021 ◽  
pp. 104062
Author(s):  
Juan Yu ◽  
Ming-Xin Sun ◽  
Gui-Peng Yang
2015 ◽  
Vol 12 (18) ◽  
pp. 5495-5514 ◽  
Author(s):  
X.-H. Guo ◽  
W.-D. Zhai ◽  
M.-H. Dai ◽  
C. Zhang ◽  
Y. Bai ◽  
...  

Abstract. This study reports the most comprehensive data set thus far of surface seawater pCO2 (partial pressure of CO2) and the associated air–sea CO2 fluxes in a major ocean margin, the East China Sea (ECS), based on 24 surveys conducted in 2006 to 2011. We showed highly dynamic spatial variability in sea surface pCO2 in the ECS except in winter, when it ranged across a narrow band of 330 to 360 μatm. We categorized the ECS into five different domains featuring with different physics and biogeochemistry to better characterize the seasonality of the pCO2 dynamics and to better constrain the CO2 flux. The five domains are (I) the outer Changjiang estuary and Changjiang plume, (II) the Zhejiang–Fujian coast, (III) the northern ECS shelf, (IV) the middle ECS shelf, and (V) the southern ECS shelf. In spring and summer, pCO2 off the Changjiang estuary was as low as < 100 μatm, while it was up to > 400 μatm in autumn. pCO2 along the Zhejiang–Fujian coast was low in spring, summer and winter (300 to 350 μatm) but was relatively high in autumn (> 350 μatm). On the northern ECS shelf, pCO2 in summer and autumn was > 340 μatm in most areas, higher than in winter and spring. On the middle and southern ECS shelf, pCO2 in summer ranged from 380 to 400 μatm, which was higher than in other seasons (< 350 μatm). The area-weighted CO2 flux on the entire ECS shelf was −10.0 ± 2.0 in winter, −11.7 ± 3.6 in spring, −3.5 ± 4.6 in summer and −2.3 ± 3.1 mmol m−2 d−1 in autumn. It is important to note that the standard deviations in these flux ranges mostly reflect the spatial variation in pCO2 rather than the bulk uncertainty. Nevertheless, on an annual basis, the average CO2 influx into the entire ECS shelf was 6.9 ± 4.0 mmol m−2 d−1, about twice the global average in ocean margins.


2011 ◽  
Vol 57 (6) ◽  
pp. 504-513 ◽  
Author(s):  
Min Liu ◽  
Tian Xiao ◽  
Ying Wu ◽  
Feng Zhou ◽  
Wuchang Zhang

The archaeal community and the effects of environmental factors on microbial community distribution were investigated at five sampling sites in the Changjiang Estuary hypoxia area and the adjacent East China Sea in June, August, and October 2006. Profiles of the archaeal communities were generated by denaturing gradient gel electrophoresis of 16S rRNA genes followed by DNA sequence analysis, and the results were analyzed by multivariate statistical analysis. Denaturing gradient gel electrophoresis band patterns were analyzed by cluster analysis to assess temporal changes in the genetic diversity of the archaeal communities. Most of the October samples grouped together separately from those of June and August. Analysis of DNA sequences revealed that the dominant archaeal groups in the Changjiang Estuary hypoxia area and the adjacent East China Sea were affiliated with Euryarchaeota (mainly marine group II) and Crenarchaeota. The effects of environmental factors on the archaeal community distribution were analyzed by the ordination technique of canonical correspondence analysis. Salinity had a significant effect on the archaeal community composition.


2016 ◽  
Vol 50 (5) ◽  
pp. 2255-2263 ◽  
Author(s):  
Hongjie Wang ◽  
Minhan Dai ◽  
Jinwen Liu ◽  
Shuh-Ji Kao ◽  
Chao Zhang ◽  
...  

2017 ◽  
Vol 122 (12) ◽  
pp. 10245-10261 ◽  
Author(s):  
Xi Wu ◽  
Pei‐Feng Li ◽  
Chun‐Ying Liu ◽  
Hong‐Hai Zhang ◽  
Gui‐Peng Yang ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Xianghui Guo ◽  
Zhentong Yao ◽  
Ying Gao ◽  
Yaohua Luo ◽  
Yi Xu ◽  
...  

Ocean acidification (OA) occurs universally in the world’s oceans. Marginal seas are facing more serious OA than the open ocean due to strong anthropogenic and natural impacts. This study investigates carbonate dynamics on the East China Sea (ECS) shelf off the Changjiang Estuary using field observations made from 2015 to 2019 that cover all four seasons. In the low productivity cold seasons, the water was well-mixed vertically. The coastal area and the northern ECS were occupied by water characterized by high dissolved inorganic carbon (DIC), low pH25 (pH at 25°C), and low ΩAr (saturation state index of aragonite), and influenced by the coastal water from the Yellow Sea (YS). However, during highly productive warm seasons, pH25 and ΩAr increased in the surface water but decreased in the bottom water as a result of strong biological DIC uptake in the surface water and CO2 production by strong organic matter remineralization in the bottom water. Strong remineralization decreased pH25 and ΩAr by 0.18 ± 0.08 and 0.73 ± 0.35 in the hypoxic bottom water in summer, even though the bottom water remained oversaturated with respect to aragonite (ΩAr &gt; 1.0) during the surveys. Under the context of global OA and the strong seasonal acidification, the projected bottom water on the ECS shelf will be corrosive for aragonite by mid-century.


Sign in / Sign up

Export Citation Format

Share Document