east china sea shelf
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 52)

H-INDEX

23
(FIVE YEARS 5)

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1191
Author(s):  
Bowen Zhu ◽  
Zhigang Zeng

Heavy mineral assemblages have been widely used to effectively trace sediment sources. Heavy mineral assemblages are rarely used in research to trace sediment sources in the southern Okinawa Trough compared with geochemical proxies. In this study, the TESCAN Integrated Mineral Analyzer (TIMA) revealed the full-size heavy mineral assemblages in the five layers of the core sediment H4-S2 in the southern Okinawa Trough. During the past 700 years, the heavy mineral assemblages in the sediments of the southern Okinawa Trough were very similar to the East China Sea shelf/Yangtze River, mainly composed of mica and chlorite; dolomite; actinolite; and hematite/magnetite. The grain size distribution of heavy minerals is in the clay–sand range and mainly in silt. Actinolite and hornblende can indicate the supply of sediments from the East China Sea shelf/Yangtze River to the southern Okinawa Trough. Due to their complex sources, pyrite, epidote, and hematite/magnetite are not adequate indicators for distinguishing between the different provenance areas. Because previous studies have used a variety of analytical methods, especially using heavy liquids with different densities, dolomite cannot be used as a marker for sediments on the Yangtze River/East China Sea shelf. Therefore, the East China Sea shelf/Yangtze River is a vital provenance of sediments from the southern Okinawa Trough since the late Holocene period.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 909
Author(s):  
Xiong Cheng ◽  
Dujie Hou ◽  
Xinhuai Zhou ◽  
Jinshui Liu ◽  
Hui Diao ◽  
...  

Eocene coal-bearing source rocks of the Pinghu Formation from the W-3 well in the western margin of the Xihu Sag, East China Sea Shelf Basin were analyzed using Rock-Eval pyrolysis and gas chromatography–mass spectrometry to investigate the samples’ source of organic matter, depositional environment, thermal maturity, and hydrocarbon generative potential. The distribution patterns of n-alkanes, isoprenoids and steranes, high Pr/Ph ratios, abundant diterpanes, and the presence of non-hopanoid triterpanes indicate predominant source input from higher land plants. The contribution of aquatic organic matter was occasionally slightly elevated probably due to a raised water table. High hopane/sterane ratios and the occurrence of bicyclic sesquiterpanes and A-ring degraded triterpanes suggest microbial activity and the input of microbial organisms. Overwhelming predominance of gymnosperm-derived diterpanes over angiosperm-derived triterpanes suggest a domination of gymnosperms over angiosperms in local palaeovegetation during the period of deposition. The high Pr/Ph ratios, the plot of Pr/n-C17 versus Ph/n-C18, the almost complete absence of gammacerane, and the distribution pattern of hopanes suggest that the samples were deposited in a relatively oxic environment. Generally, fluctuation of redox potential is coupled with source input, i.e., less oxic conditions were associated with more aquatic organic matter, suggesting an occasionally raised water table. Comprehensive maturity evaluation based on Ro, Tmax, and biomarker parameters shows that the samples constitute a natural maturation profile ranging from marginally mature to a near peak oil window. Hydrogen index and atomic H/C and O/C ratios of kerogens suggest that the samples mainly contain type II/III organic matter and could generate mixed oil and gas.


AAPG Bulletin ◽  
2021 ◽  
Vol 105 (8) ◽  
pp. 1627-1659
Author(s):  
Jun Li ◽  
Jingzhou Zhao ◽  
Zhiqiang Hou ◽  
Shuping Zhang ◽  
Mengna Chen

Author(s):  
Ping Wang ◽  
Hongbo Zheng ◽  
Yongdong Wang ◽  
Xiaochun Wei ◽  
Lingyu Tang ◽  
...  

The evolution of the Yangtze River, the longest river in Asia, provides a spectacular example for understanding the Cenozoic interaction between tectonics, climate, and surficial processes. The oldest Lower Yangtze deposits, characterized by ∼100-m-thick sequences of unconsolidated conglomerate, sandstone, and siltstone, referred to as “Yangtze Gravel,” have been recently dated >23 Ma, indicating a pre-Miocene establishment of a through-going river. However, the link between river integration and tectonic evolution has never been established due to the limited study of these sediments. Here, we report sedimentology, geochronology, and provenance of the Yangtze Gravel based on 17 stratigraphic sections exposed along the Lower Yangtze River. Our new chronostratigraphic results, including 40Ar/39Ar ages from the overlying basalt and fossil-based stratigraphic correlation, suggest an early-middle Miocene age for these sediments. Detailed analysis of lithofacies reveals several sequences of coarse-grained channel-belt deposits (channel fills and bars), indicating braided alluvial deposition across the Jianghan Basin, North Jiangsu-South Yellow Sea Basin, and East China Sea Shelf Basin. This ancient Lower Yangtze River is further characterized by petrography and detrital zircon U-Pb geochronology results which show similar provenance and erosion pattern as the present-day Yangtze River. However, the ancient river in early-middle Miocene is an alluvial, bedload-dominated braided river with higher stream power and a more prolonged course flowing into the East China Sea Shelf Basin. These differences between ancient and modern Lower Yangtze River reflect varied climate and paleogeography in southeast China during the late Cenozoic. Compared with the Paleogene red-colored, halite-bearing, Ephedripite pollen-dominated, lacustrine deposits in Jianghan Basin and North Jiangsu-South Yellow Sea Basin, the deposition of yellow to green-colored, coarse-grained, arboreal pollen, and wood-dominated Yangtze Gravel indicates a drainage reorganization from hydrologically closed lakes to a through-going river system during late Oligocene to early Miocene. During Paleogene, rift basins were filled by alluvial and fluvial-lacustrine deposition with restricted flow distance and local sources. From late Oligocene to early-middle Miocene, the post-rift subsidence opens a path for the ancient Lower Yangtze River connecting the Jianghan Basin, North Jiangsu-South Yellow Sea Basin, and East China Sea Shelf Basin. We attribute the drainage reorganization of the Lower Yangtze River to be a surficial response to Cenozoic tectonics, particularly the western Pacific subduction, in southeast China. The deposition of the widespread, coarse-grained Yangtze Gravel is probably due to the combined effects of catchment expansion and strong monsoonal climate in East Asia.


Sign in / Sign up

Export Citation Format

Share Document