scholarly journals The Cadiz Contourite Channel: Sandy contourites, bedforms and dynamic current interaction

2013 ◽  
Vol 343 ◽  
pp. 99-114 ◽  
Author(s):  
D.A.V. Stow ◽  
F.J. Hernández-Molina ◽  
E. Llave ◽  
M. Bruno ◽  
M. García ◽  
...  
2021 ◽  
pp. 103832
Author(s):  
Amin Ghadirian ◽  
Malene Hovgaard Vested ◽  
Stefan Carstensen ◽  
Erik Damgaard Christiensen ◽  
Henrik Bredmose

Author(s):  
Ladislaus Alexander Bányai

AbstractWe extend the standard solid-state quantum mechanical Hamiltonian containing only Coulomb interactions between the charged particles by inclusion of the (transverse) current-current diamagnetic interaction starting from the non-relativistic QED restricted to the states without photons and neglecting the retardation in the photon propagator. This derivation is supplemented with a derivation of an analogous result along the non-rigorous old classical Darwin-Landau-Lifshitz argumentation within the physical Coulomb gauge.


2020 ◽  
Vol 39 (1) ◽  
pp. 25-40
Author(s):  
Jingling Yang ◽  
Shaocai Jiang ◽  
Junshan Wu ◽  
Lingling Xie ◽  
Shuwen Zhang ◽  
...  

Author(s):  
J.-S. Zhang ◽  
Y. Zhang ◽  
C. Zhang ◽  
D.-S. Jeng

In this paper, a numerical model is developed to study the dynamic response of a porous seabed to combined wave-current loadings. While the Reynolds-averaged Navier–Stokes equations with k-ε turbulence closure scheme and internal wave-maker function are solved for the phenomenon of wave-current interaction, Biot's poro-elastic “u-p” model is adopted for the seabed response. After validated by the laboratory measurements, this model is applied for the investigation of the effects of waves and currents on the wave-current induced pore pressures. Furthermore, the effects of currents on maximum liquefaction depths of a porous seabed is examined, and it is concluded that the opposite currents will increase the liquefaction depth up to 30% of that without currents.


1978 ◽  
Vol 83 (C12) ◽  
pp. 6063 ◽  
Author(s):  
Robert A. Dalrymple ◽  
Carlos J. Lozano

Sign in / Sign up

Export Citation Format

Share Document