scholarly journals Beachrock: A tool for reconstructing relative sea level in the far-field

2015 ◽  
Vol 362 ◽  
pp. 1-16 ◽  
Author(s):  
Barbara Mauz ◽  
Matteo Vacchi ◽  
Andrew Green ◽  
Goesta Hoffmann ◽  
Andrew Cooper
2021 ◽  
Author(s):  
Ryo Nakanishi ◽  
Juichiro Ashi ◽  
Yusuke Yokoyama ◽  
Yosuke Miyairi

<p>In order to estimate the size and the origin of giant tsunamis, it is useful to investigate “tsunami far-field” as the coastal area far from the source. However, it is challenging to distinguish a tsunami deposit from an extreme storm deposit in these areas. In this study, we report sand layers induced by extreme waves on the coast of Hokkaido, Japan, facing the southern Kuril Trench. In the study area (central part of the Hidaka coast), it is said that the tsunamis caused by observed earthquakes have never exceeded the dune or beach. However, geological evidence indicates that giant earthquakes and tsunamis occurred at intervals of several hundred years in the Kuril Trench, and the traces of these tsunamis are still unclear in the Hidaka region.</p><p>The study area can be classified into the inland zone consisting of peatland and the seaward zone consisting of floodplain muds by the paleo beach ridge. We identified three volcanic ash layers and three to four sand layers with clear boundaries to the ordinary mud layer in each zone. However, there are large gaps in the ages of the sand layers discovered in both inland and seaward zones, and their distributions are limited (ranging from a few tens to 100 m from the ridge at that time) and do not overlap. To understand the peculiarities of the depositional age and distribution of the sand layers, we clarified the sedimentary environmental changes and sea-level index in the late Holocene by analyzing the diatom assemblage and CNS of the mud layer. The inland zone showed the paleoenvironments from the sandy tidal flat formed by the transgression in the mid-Holocene to the beach ridge formed by the regression, and the sheet sand layers were formed only during the period of the beach ridge development. On the other hand, the seaward zone showed various changes due to the formation of meandering rivers and beach ridges associated with the regression, and the formation of recognizable event layers is accompanied by changes in the depositional environment, such as the opening of lagoons and rapid changes to upland. Thus, especially in the tsunami far-field, the preservation potential of the event layers is strongly influenced by the coastal development and relative sea level, and such geological information will provide clues to identify the origin of the sand layer. In the presentation, the numerical simulation of the paleo-tsunami considering the reconstructed relative sea-level change and topographic development will be reported.</p>


2015 ◽  
Vol 1 (4) ◽  
pp. 247-262 ◽  
Author(s):  
Nicole S. Khan ◽  
Erica Ashe ◽  
Timothy A. Shaw ◽  
Matteo Vacchi ◽  
Jennifer Walker ◽  
...  

2020 ◽  
Vol 644 ◽  
pp. 33-45
Author(s):  
JM Hill ◽  
PS Petraitis ◽  
KL Heck

Salt marshes face chronic anthropogenic impacts such as relative sea level rise and eutrophication, as well as acute disturbances from tropical storms that can affect the productivity of these important communities. However, it is not well understood how marshes already subjected to eutrophication and sea level rise will respond to added effects of episodic storms such as hurricanes. We examined the interactive effects of nutrient addition, sea level rise, and a hurricane on the growth, biomass accumulation, and resilience of the saltmarsh cordgrass Spartina alterniflora in the Gulf of Mexico. In a microtidal marsh, we manipulated nutrient levels and submergence using marsh organs in which cordgrasses were planted at differing intertidal elevations and measured the impacts of Hurricane Isaac, which occurred during the experiment. Prior to the hurricane, grasses at intermediate and high elevations increased in abundance. After the hurricane, all treatments lost approximately 50% of their shoots, demonstrating that added nutrients and elevation did not provide resistance to hurricane disturbance. At the end of the experiment, only the highest elevations had been resilient to the hurricane, with increased above- and belowground growth. Added nutrients provided a modest increase in above- and belowground growth, but only at the highest elevations, suggesting that only elevation will enhance resilience to hurricane disturbance. These results empirically demonstrate that S. alterniflora in microtidal locations already subjected to submergence stress is less able to recover from storm disturbance and suggests we may be underestimating the loss of northern Gulf Coast marshes due to relative sea level rise.


Geology ◽  
1985 ◽  
Vol 13 (9) ◽  
pp. 661 ◽  
Author(s):  
Alan Ruffman ◽  
Ann A. L. Miller ◽  
David B. Scott

2021 ◽  
Vol 266 ◽  
pp. 107071
Author(s):  
Alar Rosentau ◽  
Volker Klemann ◽  
Ole Bennike ◽  
Holger Steffen ◽  
Jasmin Wehr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document