Seasonal succession, vertical distribution, and dissolution of planktonic foraminifera along the Subarctic Front: Implications for paleoceanographic reconstruction in the northwestern Pacific

2005 ◽  
Vol 55 (3-4) ◽  
pp. 129-156 ◽  
Author(s):  
Mia Mohammad Mohiuddin ◽  
Akira Nishimura ◽  
Yuichiro Tanaka
1996 ◽  
Vol 46 (3) ◽  
pp. 230-250 ◽  
Author(s):  
Sergei A. Gorbarenko

Stable isotopes, geochemical, lithological, and micropaleontological results from cores from the far northwest (FNW) Pacific and the Okhotsk and Bering seas are used to reconstruct the regional environment for the last glaciation, the deglacial transition, and the Holocene. δ18O records of planktonic foraminifera of the region show two “light” shifts during deglacial time, provoked by the freshening of the surface water and climate warming. These north Pacific terminal events (T1ANP and T1BNP) with ages of 12,500 and 9300 yr B.P., respectively, occur almost simultaneously with two episodes of accelerated glacier melting around the North Atlantic. Along with the isotopic shifts, the CaCO3 content in regional sediments increased abruptly (1A and 1B carbonate peaks), probably due to changes of productivity and pore water chemistry of surface sediments. Organic matter and opal concentration increased during the transition (between T1ANP and T1BNP events) in the sediments of the FNW Pacific and the southern part of the Bering Sea and opal content increased in the Holocene in the Bering and Okhotsk Seas. δ13C records of cores from the Okhotsk and Bering seas and the FNW Pacific do not contradict the hypothesis of increased intermediate water formation in the region during glaciation. During deglaciation, accumulation of the coarse terrigenous component decreased in sediments of the Bering Sea and the FNW Pacific before the T1ANP event, probably as a result of rising sea level and opening of the Bering Strait.


Sign in / Sign up

Export Citation Format

Share Document