Occurrence and distribution of pharmaceutical compounds in the Danshuei River Estuary and the Northern Taiwan Strait

2019 ◽  
Vol 146 ◽  
pp. 509-520 ◽  
Author(s):  
Tien-Hsi Fang ◽  
Chen-Wei Lin ◽  
Chih-Hsiang Kao
2014 ◽  
Vol 90 ◽  
pp. 60-69 ◽  
Author(s):  
Aijun Wang ◽  
Xiang Ye ◽  
Xiaoqin Du ◽  
Binxin Zheng

2020 ◽  
Vol 70 (12) ◽  
pp. 1571-1585
Author(s):  
Zhonghua Zhao ◽  
Jianwei Lin ◽  
Jun Fu ◽  
Yuwu Jiang

2011 ◽  
Vol 8 (4) ◽  
pp. 841-850 ◽  
Author(s):  
S. Shang ◽  
Q. Dong ◽  
Z. Lee ◽  
Y. Li ◽  
Y. Xie ◽  
...  

Abstract. This study used MODIS observed phytoplankton absorption coefficient at 443 nm (Aph) as a preferable index to characterize phytoplankton variability in optically complex waters. Aph derived from remote sensing reflectance (Rrs, both in situ and MODIS measured) with the Quasi-Analytical Algorithm (QAA) were evaluated by comparing them with match-up in situ measurements, collected in both oceanic and nearshore waters in the Taiwan Strait (TWS). For the data with matching spatial and temporal window, it was found that the average percentage error (ε) between MODIS derived Aph and field measured Aph was 33.8% (N=30, Aph ranges from 0.012 to 0.537 m−1), with a root mean square error in log space (RMSE_log) of 0.226. By comparison, ε was 28.0% (N=88, RMSE_log = 0.150) between Aph derived from ship-borne Rrs and Aph measured from water samples. However, values of ε as large as 135.6% (N=30, RMSE_log = 0.383) were found between MODIS derived chlorophyll-a (Chl, OC3M algorithm) and field measured Chl. Based on these evaluation results, we applied QAA to MODIS Rrs data in the period of 2003–2009 to derive climatological monthly mean Aph for the TWS. Three distinct features of phytoplankton dynamics were identified. First, Aph is low and the least variable in the Penghu Channel, where the South China Sea water enters the TWS. This region maintains slightly higher values in winter (~17% higher than that in the other seasons) due to surface nutrient entrainment under winter wind-driven vertical mixing. Second, Aph is high and varies the most in the mainland nearshore water, with values peaking in summer (June–August) when river plumes and coastal upwelling enhance surface nutrient loads. Interannual variation of bloom intensity in Hanjiang River estuary in June is highly correlated with alongshore wind stress anomalies, as observed by QuikSCAT. The year of minimum and maximum bloom intensity is in the midst of an El Niño and a La Niña event, respectively. Third, a high Aph patch appears between April and September in the middle of the southern TWS, corresponding to high thermal frontal probabilities, as observed by MODIS. Our results support the use of satellite derived Aph for time series analyses of phytoplankton dynamics in coastal ocean regions, whereas satellite Chl products derived empirically using spectral ratio of Rrs suffer from artifacts associated with non-biotic optically active materials.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3075
Author(s):  
Tien-Hsi Fang ◽  
Cheng-Wen Wang

The Danshuei River Estuary (DRE) in northern Taiwan is a seriously eutrophic estuary due to the domestic effluent discharge. Surface sediment samples were collected from the DRE to study the concentrations and spatial distributions of different fractions of phosphorus through the five-step sequential extraction method which chemically divides the sedimentary P into five fractions: PSORB, PCDB, PCFA, PDET, and PORG. The Fe and Mn contents in the extracted solution were also determined. The total organic carbon (TOC) and grain size in sediment samples were analyzed as well. The sedimentary total P (TP) concentrations ranged within 537–1310 mg/kg and mostly exceeded 800 mg/kg, suggesting that the DRE sediments were moderately polluted by phosphorus. The PCDB was the dominant fraction of P, averagely contributing 58% of TP, followed by PDET 31%. The contributions of the PSORB and PCFA fractions to the TP were relatively minor. Two fractions, FeCDB and FeORG, of sedimentary Fe equally shared approximately 70% of total Fe, followed by FeDET with 22%. The contribution of different fractions of sedimentary Mn followed the sequence: MnCDB (36%) > MnCFA (29%) > MnORG (14.7%) > MnDET (14.5%) > MnSORB (5.3%). The sedimentary P, Fe, and Mn within the DRE are easily mobilized because they were mainly present in the reducible fraction. The concentrations of sedimentary TP positively correlated with the TOC contents and inversely negatively correlated with grain size, suggesting that the TOC and grain size play the crucial roles in influencing the distribution of sedimentary P within the DRE. Finally, the Fe(III) (hydro)oxides seems to play an important carriers to adsorb dissolved P because PCDB positively correlated with FeCDB.


2019 ◽  
Vol 36 (2) ◽  
pp. 297-315
Author(s):  
Jenn-Shyong Chen ◽  
Jian-Wu Lai ◽  
Hwa Chien ◽  
Chien-Ya Wang ◽  
Ching-Lun Su ◽  
...  

Abstract A VHF pulsed radar system was set up on the Taoyuan County seashore (24°57′58″N, 121°00′30″E; Taiwan) to observe the sea surface in the northern Taiwan Strait for the first time. The radar used a four-element, vertically polarized Yagi antenna to transmit the 52-MHz radar wave. The receiving linear array consists of four vertical dipole antennas that were located 3 m apart and attached with four independent and identical receivers. With the multichannel echoes, the direction of arrival (DOA) of the radar echoes were determined by using an optimization beamforming approach—the Capon method. Echo intensity was observed to vary principally in semidiurnal oscillation, which matched well the time series of tide gauge measurements and sea level simulations. In addition, the oscillatory characteristics of Doppler/radial velocity of the VHF radar were generally consistent with that of the HF coastal ocean dynamics applications radar (CODAR) nearby. Nevertheless, the contributions of various tidal modes to the parameters of DOA, echo intensity, radial velocity, and spectral width, varied with the range and time period (e.g., neap or spring tides). For example, the semidiurnal tides governed the variation in the echo center only in the range interval between ~15 and ~25 km from the seashore but dominated other parameters throughout the detectable range. Correlations and phase relationships between these parameters were diverse; they varied with time and had dramatic changes at around the distances of 3 and 10 km. Possible causes of these features were discussed, including sea surface wind, nearshore current, sea level height, and bathymetric effect.


2020 ◽  
Vol 20 (12) ◽  
pp. 2715-2728
Author(s):  
Chung-Shin Yuan ◽  
Yen-Lun Su ◽  
Tsung-Chang Li ◽  
Yu-Lun Tseng ◽  
Hsueh-Lung Chuang

Sign in / Sign up

Export Citation Format

Share Document