Stable isotopes (δ13C and δ15N) in black coral as new proxies for environmental record

2021 ◽  
Vol 164 ◽  
pp. 112007
Author(s):  
Dan Wu ◽  
Fenfen Zhang ◽  
Xiaodi Zhang ◽  
Xiubao Li ◽  
Hui Huang ◽  
...  
2019 ◽  
Author(s):  
Marko J. Spasojevic ◽  
Sören Weber1

Stable carbon (C) and nitrogen (N) isotopes in plants are important indicators of plant water use efficiency and N acquisition strategies. While often regarded as being under environmental control, there is growing evidence that evolutionary history may also shape variation in stable isotope ratios (δ13C and δ15N) among plant species. Here we examined patterns of foliar δ13C and δ15N in alpine tundra for 59 species in 20 plant families. To assess the importance of environmental controls and evolutionary history, we examined if average δ13C and δ15N predictably differed among habitat types, if individual species exhibited intraspecific trait variation (ITV) in δ13C and δ15N, and if there were a significant phylogenetic signal in δ13C and δ15N. We found that variation among habitat types in both δ13C and δ15N mirrored well-known patterns of water and nitrogen limitation. Conversely, we also found that 40% of species exhibited no ITV in δ13C and 35% of species exhibited no ITV in δ15N, suggesting that some species are under stronger evolutionary control. However, we only found a modest signal of phylogenetic conservatism in δ13C and no phylogenetic signal in δ15N suggesting that shared ancestry is a weaker driver of tundra wide variation in stable isotopes. Together, our results suggest that both evolutionary history and local environmental conditions play a role in determining variation in δ13C and δ15N and that considering both factors can help with interpreting isotope patterns in nature and with predicting which species may be able to respond to rapidly changing environmental conditions.


2010 ◽  
Vol 61 (3) ◽  
pp. 302 ◽  
Author(s):  
Matthew D. Taylor ◽  
Debashish Mazumder

Carbon and nitrogen stable isotope ratios were analysed for hatchery-reared, recaptured and wild mulloway, Argyrosomus japonicus, to investigate temporal and growth-related changes in isotopic composition for stocked fish after release, and to evaluate changes in isotopic composition in terms of ontogenetic dietary switches. δ13C and δ15N values decreased and increased, respectively, after release. The isotope composition of released fish was distinct from wild fish until 200 days after release, but after 200 days post-release fish did not differ significantly from wild fish of similar or greater sizes. Abrupt dietary transitions from crustaceans to teleost fish (>50 cm total length (TL)) were evident in a rapid δ13C and δ15N change in wild mulloway, and δ15N was significantly greater in wild fish >65 cm TL compared with wild fish <50 cm TL. Multivariate carbon and nitrogen isotopic data were suitable for separating stocked and wild fish for up to 200 days after release, but did not separate wild fish grouped according to dietary composition. Carbon and nitrogen isotopic composition closely reflected dietary transitions and rapid adaptation by stocked mulloway to wild diets, which was evident in a high tissue turnover rate of up to 0.017 day–1. Stable isotopes are a useful tool for examining the integration of released fish into stocked ecosystems and can be used to describe convergence in the diets of wild and released fish.


2020 ◽  
Vol 13 (1-2) ◽  
pp. 10-17
Author(s):  
Young-Min Moon ◽  
Kwanmok Kim ◽  
Jinhan Kim ◽  
Hwajung Kim ◽  
Jeong-Chil Yoo

Stable isotopes are well documented as effective intrinsic markers to infer migratory connectivity which provides key information for establishing an effective conservation strategy in migratory birds. However, there are few studies using stable isotopes that have been applied to long-distance migratory shorebirds globally and such studies are especially scarce along the East Asian–Australasian Flyway. We used stable isotope analysis (δ2H, δ13C and δ15N) to infer breeding and wintering areas and examine the differences in those values among populations of Terek Sandpipers ( Xenus cinereus) at stopover sites in South Korea. The range of δ2H in feathers sampled from birds caught in the Korean peninsula at spring and autumn migration stopover sites was consistent with them being grown at sites throughout their flyway as confirmed by leg flag resightings of birds on this flyway. The eastern Siberia region from Yakutsk to Norilsk and Chukotka in Russia was inferred as the most probable breeding area of the population. Papua New Guinea in the Melanesia region, Malaysia and Indonesia were identified as the most probable wintering areas. Isotope values of populations at different stopover sites and different seasons were consistent. These results suggest that stable isotopes can be effectively used alongside other existing methods (e.g. ringing, coloured leg flags, light level geolocation, satellite tag telemetry) to infer the migratory connectivity for long-distance migratory shorebird species that occur over many countries and continents.


2009 ◽  
Vol 59 (2) ◽  
pp. 231-240 ◽  
Author(s):  
Andrea Alfaro

AbstractGut content analyses and stable isotopes (δ13C and δ15N) were used to investigate the food consumption and assimilation of the pulmonate, Onchidella nigricans, within a rocky intertidal platform at Waiwera, northern New Zealand. Analyses of gut contents indicate that this species is a generalist herbivore, which may consume a variety of micro- and macro-algae, although small zooplankton may be ingested, when present. Gut contents of individuals collected from different intertidal habitats (bare rock, Hormosira banksii, green filaments, and coralline algae) reflected the dominant algal species within each habitat, suggesting that food availability does not restrict the grazer's distribution across its range. The radular morphology and small size of this gastropod also support the notion that O. nigricans is a non-selective microphagous feeder. However, stable isotopes on O. nigricans from the four habitats and the dominant algal food types indicate a strong assimilation preference for microalgae. The δ13C values (-15 to -13‰) of O. nigricans were consistent with signatures for intertidal grazers, but δ15N values (8 to 9‰) were relatively high, which may indicate the presence of bacteria and microfaunal detritus in the diet. Clusters of isotopic signatures of individuals from different habitats suggest feeding preferences, which also may be attributed to differences in detrital and bacterial consumption. This study illustrates the importance of using parallel techniques in diet studies.


Sign in / Sign up

Export Citation Format

Share Document