scholarly journals Laminin-5 activates extracellular matrix production and osteogenic gene focusing in human mesenchymal stem cells

2007 ◽  
Vol 26 (2) ◽  
pp. 106-114 ◽  
Author(s):  
Robert F. Klees ◽  
Roman M. Salasznyk ◽  
Scott Vandenberg ◽  
Kristin Bennett ◽  
George E. Plopper
Author(s):  
Hiroki Sudama ◽  
Atsushi Ogawa ◽  
Kei Saito ◽  
Wataru Ando ◽  
Norimasa Nakamura ◽  
...  

It is well known that various fibrous tissue such as tendons and ligaments functionally adapt to dynamic and static loads. Although a variety of biomechanical studies have been done to deterimine the mechanism of remodeling in fibrous tissues, it was difficult to obtain detailed information because of complicated condstitution of the tissues. We have developed a stem cell-based self-assembled tissue (scSAT) [1] for tissue engineering. Since the scSAT is consisted of synovium-derived mesenchyaml stem cells and their native extracellular matrix, it is a good experimental model to determine the process of remodeling of fibrous tisues. However, the response of shear stress to the scSAT specimen has not been determined so far, although such data are important for understanding of soft tissue remodeling and for improvement of regenerative medicine. Therefore, the present study was performed to determine the effect of shear stress on the extracellular matrix production of synovium-derived cells including mesenchymal stem cells.


2010 ◽  
Vol 111 (3) ◽  
pp. 585-596 ◽  
Author(s):  
Christina K. Chan ◽  
Marsha W. Rolle ◽  
Susan Potter-Perigo ◽  
Kathleen R. Braun ◽  
Benjamin P. Van Biber ◽  
...  

Stem Cells ◽  
2009 ◽  
Vol 27 (3) ◽  
pp. 753-760 ◽  
Author(s):  
Marta Compte ◽  
Ángel M. Cuesta ◽  
David Sánchez-Martín ◽  
Vanesa Alonso-Camino ◽  
José Luís Vicario ◽  
...  

2019 ◽  
Vol 7 (16) ◽  
pp. 2703-2713 ◽  
Author(s):  
Na Li ◽  
Alex P. Rickel ◽  
Hanna J. Sanyour ◽  
Zhongkui Hong

Stem cell differentiation on a decellularized native blood vessel scaffold under mechanical stimulation for vascular tissue engineering.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2326-2326
Author(s):  
Paul B. Bolno ◽  
Doris A. Morgan ◽  
Mahesh Sharma ◽  
Martin Lazorik ◽  
Andrew S. Wechsler ◽  
...  

Abstract Background: Annexin II (ANX2) is a fibrinolytic receptor that serves as a binding site for plasminogen and tissue plasminogen activator, facilitating the generation of plasmin. ANX2 is present on a wide variety of cells including vascular endothelial cells as well as macrophages. ANX2 has been shown to play a key role in extracellular matrix degradation, cellular migration, and invasion. This degradation of extracellular matrix may also cause the release of matrix-bound angiogenic factors such as VEGF and FGF. We hypothesized that adult human mesenchymal stem cells (hMSCs) express ANX2 and utilize this receptor for plasmin generation to facilitate basement membrane invasion. Methods: Primary hMSCs were isolated from the sternal bone marrow of patients undergoing median sternotomy. Stem cell surface markers were characterized via immuno-fluorescence. The presence of ANX2 protein by hMSCs was established via western blot. ANX2 mediated plasminogen activation and plasmin generation was quantified using chromozyme-P as a colorimetric substrate. Invasion assays were performed in dual-chamber culture wells containing matrigel inserts. hMSCs were plated into upper chambers containing: serum-free medium (SFM), SFM + Plasminogen, or SFM + Plasminogen + epsilon-aminocaproic acid (e-ACA inhibits binding of plasminogen to ANX2). After 24 hours, invasive cells were isolated and counted. Results: Sternal bone marrow derived hMSCs expressed the membrane phenotype CD34 (−), CD14 (−), CD44 (+), CD105 (+), CD106 (+). The presence of ANX2 was confirmed by western blot analysis. hMSCs generated 1.95 units of plasmin per milligram of protein. There was a 20% (p 0 .004) increase in hMSC invasion in the wells containing plasminogen as compared to SFM alone. When e-ACA was introduced there was a decrease in hMSC invasion back to control values. Conclusion: Our observations establish for the first time the presence and functional activity of ANX2 in hMSCs. These data suggest that mesenchymal stem cell expression of ANX2 facilitates plasminogen-mediated hMSC trans-endothelial invasion, migration and the release of pro-angiogenic factors from within the extracellular matrix, promoting stem cell directed repair and angiogenesis.


2016 ◽  
Vol 5 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Jangwook P. Jung ◽  
Meredith K. Bache-Wiig ◽  
Paolo P. Provenzano ◽  
Brenda M. Ogle

Sign in / Sign up

Export Citation Format

Share Document