Effect of Mn addition on deformation behaviour of 23% Cr low nickel duplex stainless steel

2018 ◽  
Vol 145 ◽  
pp. 606-618 ◽  
Author(s):  
Yinhui Yang ◽  
Hao Qian ◽  
Yusen Su
2002 ◽  
Vol 73 (12) ◽  
pp. 531-538 ◽  
Author(s):  
Lode Duprez ◽  
Bruno C. De Cooman ◽  
Nuri Akdut

Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 673
Author(s):  
Mariana Lucia Angelescu ◽  
Elisabeta Mirela Cojocaru ◽  
Nicolae Șerban ◽  
Vasile Dănuț Cojocaru

The super-duplex stainless steel UNS S32750 consists of two main phases, austenite and ferrite, which differ not only by their morphology, physical, and mechanical properties, but also by their deformation behaviour. A heterogenous deformation can be obtained during thermomechanical processing, generating internal stresses and sometimes fissures or cracks on sample lateral surfaces, due to ferrite’s phase lower potential of plastic deformation accommodation in comparison with austenite phase. The research objective is to determine the optimum range of the applied deformation degree, during hot deformation processing by upsetting of the super-duplex steel (SDSS) UNS S32750. In the experimental program several samples were hot deformed by upsetting, by applying a deformation degree between 5–50%, at 1050 °C and 1300 °C. The most representative hot-deformed samples were selected and analysed by scanning electron microscope-Electron Backscatter Diffraction (SEM-EBSD), to determine the main microstructural characteristics obtained during thermomechanical processing. When considering the experimental results, the influence of the applied deformation degree on the microstructure has been evaluated. Microstructural features, such as nature, distribution, morphology and relative proportion of constituent phases, Grain Reference Orientation Deviation (GROD), and recrystallization (RX), were analysed, in correlation with the applied deformation degree. Finally, it was concluded that the UNS S32750 alloy can be safely hot deformed, by upsetting, at 1050 °C and 1300 °C, with a maximum applied deformation degree of 20% at 1050 °C and, respectively, by 50% at 1300 °C.


2006 ◽  
Vol 524-525 ◽  
pp. 847-852 ◽  
Author(s):  
Ru Lin Peng ◽  
J. Gibmeier ◽  
Sebastian Eulert ◽  
Sten Johansson ◽  
Guo Cai Chai

The deformation behaviour of the super duplex stainless steel SAF2507 (UNS S32750) under successive uniaxial tensile loading-unloading was investigated with respect to load sharing and inter-phase interactions. The steel consists of 58% austenite and 42% ferrite in volume. By insitu X-ray diffraction experiment the evolution of phase-specific stresses with applied load was monitored for three successive loading-unloading cycles with the maximum total strains being 0.34%, 0.75% and 1.63%, respectively. It was found that yielding occurred earlier in the austenitic phase than in the ferritic phase during the first loading cycle. In the followed loading cycles, both phases yielded under larger but similar applied stresses. Due to a similar behavior of the phases in the elasto-plastic regime inter-phase interactions were relatively weak. Low microstresses induced by the plastic straining resulted in somewhat larger stresses in the ferritic phase.


Author(s):  
A. Redjaïmia ◽  
J.P. Morniroli ◽  
G. Metauer ◽  
M. Gantois

2D and especially 3D symmetry information required to determine the crystal structure of four intermetallic phases present as small particles (average size in the range 100-500nm) in a Fe.22Cr.5Ni.3Mo.0.03C duplex stainless steel is not present in most Convergent Beam Electron Diffraction (CBED) patterns. Nevertheless it is possible to deduce many crystal features and to identify unambiguously these four phases by means of microdiffraction patterns obtained with a nearly parallel beam focused on a very small area (50-100nm).From examinations of the whole pattern reduced (RS) and full (FS) symmetries the 7 crystal systems and the 11 Laue classes are distinguished without ambiguity (1). By considering the shifts and the periodicity differences between the ZOLZ and FOLZ reflection nets on specific Zone Axis Patterns (ZAP) which depend on the crystal system, the centering type of the cell and the glide planes are simultaneously identified (2). This identification is easily done by comparisons with the corresponding simulated diffraction patterns.


Sign in / Sign up

Export Citation Format

Share Document