tension tests
Recently Published Documents


TOTAL DOCUMENTS

556
(FIVE YEARS 95)

H-INDEX

27
(FIVE YEARS 3)

Author(s):  
Behzad Isazadeh-Khiav ◽  
Tohid Akhlaghi ◽  
Masoud Hajialilue-Bonab

The main goal of this research is to study the failure behavior of cement-fiber-treated sand under triaxial direct tension condition tests. Thus, a new loading system and triaxial cell was designed and built for tensile loading. Samples were prepared with content cement of 3 and 5% (dry wt.) of the sand, while two types of polypropylene fibers 0.024 m in length and 23 μm and 300 μm thick were added at 0.0% and 0.5% (dry wt.) of the sand and cement mixture. After a seven-day curing period, the samples were loaded under triaxial direct tension tests under confining pressures of 100, 200, and 300 kpa in drained conditions. Stress-strain behavior, changes in volume and energy absorbed by cement-fiber reinforced sand were measured and compared with the results of other studies. Adding fibers resulted in reduced peak deviatoric stress and increased residual deviatoric stresses of the cement-fiber reinforced sand, with changes from brittle to ductile behavior. The initial stiffness and stiffness at 50% maximum tensile stress of the samples is decreased with the addition of fibers and with an increase in fiber diameter, the reduction rate of this stiffness is more evident. The absorbed energy for fibers with a thickness of 23 μm is less than fibers with a thickness of 300 μm. The effect of adding fibers to strength parameters showed that the cohesion intercept decreases, while the internal friction angle increases.


Author(s):  
K Siimut ◽  
MFR Zwicker ◽  
CV Nielsen

Plug failures have been observed in three-sheet spot welds, where the weld nugget did not penetrate into the outer sheet. Such solid-state bonds were found to be formed as a result of high contact pressure and temperature during welding. The strength of single spot welds was studied in a three-sheet combination (0.61 mm DX54 on two 1.21 mm DP600) with nugget penetrations into the thin sheet below 40%. The static strength was evaluated by tensile shear, cross tension and mechanized peel testing, and fatigue tests were carried out in tensile shear configuration at 30 Hz and mean load of 2 kN. It was found that loading of the specimens in tensile shear, mechanized peel and cross tension tests leads to a plug failure and a ductile fracture of the thin sheet. The weld strength is not correlated with the nugget penetration into the thin sheet but is determined by the area of the bonded interface, instead, as shown by peel and cross tension tests. Fatigue tests revealed that the specimens break by a plug failure. The failure mechanism was found to be ductile for the highest load range after approximately 33 000 cycles. At lower load ranges, evidence of a crack was found in the DX54 sheet, leading to higher stress concentration and subsequent ductile fracture. It was estimated that a load range of 940 N leads to failure after approximately 106 cycles.


2021 ◽  
pp. 109963622110631
Author(s):  
Shiyong Sun ◽  
Xinling Wang ◽  
Jianping Liang ◽  
Rui Yang ◽  
Yanguang Zhao

Sandwich composites are susceptible to interfacial delamination, owing to the mismatches in the material properties between the face sheets and core. Previous studies have shown that stitching can improve the performance of sandwich composites. In this study, an analysis approach was developed to investigate the fracture behaviour of stitched foam sandwich composites. The stitched foam sandwich composites were manufactured by a vacuum-assisted resin transfer moulding process. Interlaminar tension tests revealed the effects of the linear thread density on the failure mechanisms of the stitched foam sandwich composites. Asymmetric double cantilever beam tests were performed to investigate the influences of the stitch thread reinforcement on the fracture behaviour. An analytical approach combining extended finite element method and nonlinear spring elements was proposed to predict the failure behaviour of the stitched sandwich composites. Experiment and simulation approaches were employed to investigate the influences of the stitch parameters (stitch pitch and linear thread density) on the ultimate load and energy absorption. The results show that stitched method can significantly enhance the mechanical properties of sandwich composites. The energy absorption and ultimate load values of the specimens tend to increase with an increase in the linear thread density or a decrease in the stitch pitch.


Wood Research ◽  
2021 ◽  
Vol 66 (6) ◽  
pp. 981-994
Author(s):  
YIFAN LIU ◽  
ZIYIN YAO ◽  
FEIBIN WANG ◽  
HUI HUANG ◽  
ZELI QUE

The effects of edge distances on stiffness in glulam connections with inclined self-tapping screws were studied in this paper. Under four anchorage angles (A-45°, A-60°, A-75°, A-90°) and three edge distances (EG-2D, EG-4D, EG-6D) conditions, the shear-tension tests were carried out on the timber structure connections with inclined self-tapping screws, and the stiffness and other properties of the connections were tested. Based on the results, the effects of edge distances on stiffness in joints were quantified using the equivalent energy elastic-plastic (EEEP) model. The results showed that the edge distances had a certain impact on the yield mode and load-carrying performance of the joints. Within a certain range of variation, as the edge distance increased, the stiffness of the connections increased gradually, showing a positive correlation. The stiffness of specimen EG-2D is 4.41 kN·mm-1. The stiffness of specimen EG-4D is 10.04 kN·mm-1, which increasesby 128% compared with the specimen EG-2D. The stiffness of specimen EG-6D is 12.08 kN·mm-1, which increases by 174% compared with the specimen EG-2D. However, the ductility coefficient, yielding load, and energy dissipatinghave no significant change. Within a reasonable edge distance, only ductile damage occurred.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7406
Author(s):  
Matthias Kalthoff ◽  
Michael Raupach ◽  
Thomas Matschei

A promising process for the automatization of concrete structures is extrusion or extrusion molding. An innovative approach is the extrusion of concrete with imbedded technical textiles as reinforcement. For a successful extrusion, the rheological properties of the fresh concrete have to be optimized, as it must be extrudable and have sufficient early strength after leaving the mouthpiece. Within the scope of this paper, a process was developed which allows the integration of flexible as well as stiff impregnated textiles into the extrusion process. For this purpose, different textile-reinforced mortars (TRM) were extruded and their material characteristics were investigated. The results show that the mortar cross-section is considerably strengthened, especially when using carbon textiles, and that extrusion has considerable potential to produce high-performance TRM composites. In uniaxial tension tests with TRM, as well as in the pure roving tensile strength tests, textile stresses of approx. 1200 MPa were achieved for the glass textile and approx. 2250 MPa for the carbon textile. The position of the textile layer deviated a maximal 0.4 mm from its predesigned position, which shows its potential for producing tailor-made TRM elements. In addition, by adjusting the mortar mix design, it was possible to reduce the global warming potential (GWP) of the extrusion compound by up to 49.3% compared to the initial composition from preliminary studies.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jie Liu ◽  
Gangyuan Jiang ◽  
Taoying Liu ◽  
Qiao Liang

To investigate different responses of direct and indirect tensile strengths to loading rate, direct and indirect tension tests were performed on sandstone, rust stone, and granite specimens. Typical load curves indicate that a peak tensile stress frequently appears before the second peak stress, used to calculate the tensile strength in indirect tension tests. As expected, increase in the loading rate increases the tensile strength. In addition, the calculated tensile strengths of the indirect tension tests are frequently higher. Interestingly, the increase ratio of the tensile strength with the increase in the loading rate in indirect tension tests is higher. To verify the above results, crack propagation and stress evolution in direct and indirect tension tests were dynamically monitored using PFC 3D. For direct tension tests, specimens fail at the peak tension point, corresponding to the tensile strength. However, for indirect tension tests, minor cracks, composing of continuous microcracks, form before the peak stress and accompany with the decreased slope of the compression curve. At the peak point, tensile stresses significantly concentrate at the crack tips and further cause large-scale crack propagation. In addition, the initiation stress instead of the peak tensile stress is closer to the tensile strength, obtained from the direct tests for the same loading rate.


Author(s):  
Latifa Arfaoui ◽  
Amel Samet ◽  
Amna Znaidi

The main purpose of this paper is to study the orthotropic plastic behaviour of the cold-rolled interstitial free steel HC260Y when it is submitted to various loading directions under monotonic tests. The experimental database included tensile tests carried out on specimens (in the as-received condition and after undergoing an annealing heat treatment) cut in different orientations according to the rolling direction. A model was proposed, depending on a plasticity criterion, a hardening law and an evolution law, which takes into account the anisotropy of the material. To validate the proposed identification strategy, a comparison with the experimental results of the planar tension tests, carried out on specimens cut parallel to the rolling direction, was considered. The obtained results allowed the prediction of the behaviour of this material when it is subjected to other solicitations whether simple or compound.


2021 ◽  
Author(s):  
alireza allafchian ◽  
Shiva Saeedi ◽  
Seyed Amir Hossein Jalali

Abstract Synthesis of Balangu (Lallemantia royleana) seed mucilage (BSM) solutions combined with polyvinyl alcohol (PVA) was studied for the purpose of producing 3D electrospun cell culture scaffolds. Production of pure BSM nanofibers proved to be difficult, yet integration of PVA contributed to a facile and successful formation of BSM/PVA nanofibers. Different BSM/PVA ratios were fabricated to achieve the desired nanofibrous structure for cell proliferation. It is found that the optimal bead-free ratio of 50/50 with a mean fiber diameter of ≈180 nm presents the most desirable scaffold structure for cell growth. The positive effect of PVA incorporation was approved by analyzing BSM/PVA solutions through physiochemical assays such as electrical conductivity, viscosity and surface tension tests. According to the thermal analysis (TGA/DSC), incorporation of PVA enhanced thermal stability of the samples. Successful fabrication of the nanofibers is verified by FT-IR spectra, where no major chemical interaction between BSM and PVA is detected. The crystallinity of the electrospun nanofibers is investigated by XRD, revealing the nearly amorphous structure of BSM/PVA scaffolds. The MTT assay is employed to verify the biocompatibility of the scaffolds. The cell culture experiment using epithelial Vero cells shows the affinity of the cells to adhere to their nanofibrous substrate and grow to form continuous cell layers after 72 h of incubation.


Author(s):  
Martina Pressacco ◽  
Jari J. J. Kangas ◽  
Timo Saksala

AbstractThis paper presents a numerical study on the effects of microwave irradiation on the mechanical properties of hard rock. More specifically, the weakening effect of microwave heating induced damage on the uniaxial compressive and tensile strength of granite-like rock is numerically evaluated. Rock fracture is modelled by means of a damage-viscoplasticity model with separate damage variables for tensile and compressive failure types. We develop a global solution strategy where the electromagnetic problem is solved first separately in COMSOL multiphysics software, and then provided into a staggered implicit solution method for the thermo-mechanical problem. The thermal and mechanical parts of the problem are considered as uncoupled due to the dominance of the microwave-induced heat source. The model performance is tested in 2D finite element simulations of heterogeneous numerical rock specimens subjected first to heating in a microwave oven and then to uniaxial compression and tension tests. According to the results, the compressive and tensile strength of rock can be significantly reduced by microwave heating pretreatment.


Sign in / Sign up

Export Citation Format

Share Document