Statistical analysis of EBSD data to predict potential abnormal grain growth in 3.0 wt% Si grain-oriented electrical steel

2020 ◽  
Vol 167 ◽  
pp. 110450 ◽  
Author(s):  
Seil Lee ◽  
Kyung Jun Ko ◽  
Se-Jong Kim ◽  
Jong Tae Park
2013 ◽  
Vol 753 ◽  
pp. 329-332
Author(s):  
Yoshihiro Arita ◽  
Yoshiyuki Ushigami ◽  
Kenichi Murakami ◽  
Kohsaku Ushioda

Texture change during grain growth in Fe-3%Si non-oriented electrical steel was investigated. Cold rolled steel, 0.35mm in thickness, was annealed and recrystallized as an initial structure. Normal grain growth and abnormal grain growth occurred by additional annealing. {111} was dominant in the initial texture. However {100} component, which was not in majority in the initial structure, became stronger after normal grain growth. It was revealed that an average grain size of {100} in the initial structure was bigger than those of other components by analysis of the EBSD data,. Therefore, it is concluded that {100} strengthened after normal grain growth due to its size advantage. On the other hand, {111} components became more stronger after abnormal grain growth. It is inferred that another mechanism of the texture change worked in abnormal grain growth.


2004 ◽  
Vol 385 (1-2) ◽  
pp. 449-454 ◽  
Author(s):  
Mykola Džubinský ◽  
Yuriy Sidor ◽  
František Kováč

2019 ◽  
Author(s):  
Soran Birosca ◽  
Ali Nadoum ◽  
Diween Hawezy ◽  
Fiona Robinson ◽  
Winfried Kockelmann

2012 ◽  
Vol 706-709 ◽  
pp. 2622-2627 ◽  
Author(s):  
Chun Kan Hou ◽  
Jian Ming Tzeng

Effects of three heating rates, 5, 20/min., and 300°C/sec and decarburization temperature, 700-850°C in primary annealing on the microstructure and magnetic properties of a grain oriented electrical steel were investigated. It was found that the oxide layer thickness and grain size increased with increasing decarburization temperature. However, they decreased with increasing heating rate. On the other hand, injection nitrogen content into steel sheets decreased with increasing decarburization temperature. The percentage of abnormal grain growth obtained a peak value at 800°C in the specimens treated with heating rate less than 20°C per minute. But specimens with rapid heating rate, percentage of abnormal grain growth increased with increasing decarburization temperature. As percentage of abnormal growth increased, magnetic properties got better.


2021 ◽  
Author(s):  
◽  
Ali Nadoum

The first Si-Fe electrical steel was produced in 1905, and the grain-oriented steel was discovered in 1930 after Goss demonstrated how optimal combinations of heat treatment and cold rolling could produce a texture giving Si-Fe strip good magnetic properties when magnetised along its rolling direction. This technology has reduced the power loss in transformers greatly and remains the basis of the manufacturing process today. Since then, many postulations reported on the mechanism on abnormal grain growth (AGG) which is the key for Si-Fe superior magnetic properties. However, none have provided a concrete understanding of this phenomenon. Identifying and classifying the driving force behind Goss abnormal grain growth is of industrial and academic importance to further optimise the manufacturing process and reduce losses. In the current investigation, the deviation from easy magnetisation direction <001> was studied to find a correlation between crystallographic orientation and magnetic domain structure. Both deviation angles α: the angle between <001> and in-plane rolling direction (RD), and β: the angle between <001> and out-plane rolling direction were calculated using electron backscatter diffraction (EBSD) raw data. Further, EBSD combined with forescatter detector (FSD) is used to reveal the magnetic domain configuration within individual oriented grains. The magnetic domain patterns were directly imaged and correlated to the crystal orientation and α and β deviation angles. It was demonstrated that the size of the deviated orientation grains from ideal (110) <001> Goss orientation is a critical microtexture parameter for the optimisation of magnetic property. It is concluded that the magnetic domain patterns and α and β angle of deviations are strongly correlated to the magnetic losses in GOES (grain oriented electrical steel).Furthermore, the effect of grain boundaries, grain size, heating rate and dislocation density on Goss abnormal grain growth was investigated using EBSD. It was found that in the early stages of secondary recrystallisation random grains grow and abnormal growth of Goss achieved in low heating rate. The advantage of Goss abnormal grain growth in secondary recrystallisation is lost while annealing at a high heating rate, and random orientation can grow abnormally. Also, statistical analysis of grain boundaries, including CSL (coincident site lattice), shows no distinct behaviour and high angle grain boundaries and CSL are not exclusive to Goss oriented grains. In addition, GND (geometrically necessary dislocation) and Taylor Factor showed to be randomly distributed around Goss grains, and the hypothesis of Goss grains grow by consuming high GND and Taylor Factor grains cannot be the reason for Goss abnormal grain growth. Neutron diffraction experiment was conducted at Rutherford Appleton Laboratory, ISIS facility at Oxford, UK using GEM beamline. It was demonstrated that Si atom positions in the solid solution disorder α-Fe cubic unit cell that cause lattice distortions and BCC symmetry reduction is the most influential factor in early stages of Goss AGG than what was previously thought to be dislocation related stored energy, grain boundary characteristics and grain size/orientation advantages. Finally, heat flux, heat flow direction, and strain effect on Goss abnormal grain growth investigated. It was found that heat flow direction greatly impacts the rate of abnormal grain growth of Goss. Also, strain areas can disrupt Goss AGG and promotes randomly oriented grains to grow abnormally.


2007 ◽  
Vol 539-543 ◽  
pp. 4428-4433 ◽  
Author(s):  
Y. Arita ◽  
Yoshiyuki Ushigami

The effect of annealing temperature on grain growth, texture development and magnetic properties of Al-free and Al-1% added non-oriented electrical steel were investigated. Normal grain growth occurred in Al-free steel. On the other hand, abnormal grain growth occurred in Al-added steel which was annealed at 800°C for 24h. Precipitates in these two steels were different. TiN precipitated in Alfree steel, but in the case of Al-added steel, AlN and TiC precipitated. The TiC in Al-added steel was so fine that it inhibited the normal grain growth and finally caused the abnormal grain growth. Main textures of both steels were near {111}<112>, but the intensity of near {111}<112> in the abnormal grain growth was higher than that in the normal grain growth. Magnetic flux density (B50/Bs) was decreased by the grain growth. Especially B50/Bs in the abnormal grain growth was lower than that in normal grain growth. B50/Bs in these steels can be estimated by their three-dimensional textures in vector method.


2020 ◽  
Vol 185 ◽  
pp. 370-381 ◽  
Author(s):  
Soran Birosca ◽  
Ali Nadoum ◽  
Diween Hawezy ◽  
Fiona Robinson ◽  
Winfried Kockelmann

2018 ◽  
Author(s):  
Risheng Pei ◽  
Sandra Korte-Kerzel ◽  
Talal Al-Samman

Sign in / Sign up

Export Citation Format

Share Document