heating rates
Recently Published Documents


TOTAL DOCUMENTS

1882
(FIVE YEARS 620)

H-INDEX

57
(FIVE YEARS 14)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 564
Author(s):  
Beate Capraro ◽  
Manuel Heidenreich ◽  
Jörg Töpfer

We have studied the sintering behavior of CT708 LTCC tapes with large CTE of 10.6 ppm/K. This low-k dielectric LTCC material is a quartz-based glass ceramic composite system with partial crystallization of celsian upon firing. The shrinkage, densification and dielectric properties were examined using different heating rates and a sintering temperature of 900 °C. The maximum shrinkage rate is at 836 °C (for a heating rate of 2 K/min) with a sintering density of 95% and a permittivity of ε’ = 5.9 and tan δ = 0.0004 (at 1 GHz). Due to their similar shrinkage and thermal expansion properties, CT708 tapes may be cofired with functional ceramic layers. As an example, we report on cofiring of a multilayer laminate of CT708 and a Sc-substituted hexagonal ferrite for applications as integrated microwave circulator components. This demonstrates the feasibility of cofiring of functional ceramic tapes and tailored LTCC tapes and documents the potential for the realization of complex LTCC multilayer architectures.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 81
Author(s):  
Kui Li ◽  
Wei Zhang ◽  
Menglong Fu ◽  
Chengzhi Li ◽  
Zhengliang Xue

Generally, the linear correlation coefficient is one of the most significant criteria to appraise the kinetic parameters computed from different reaction models. Actually, the optimal kinetic triplet should meet the following two requirements: first, it can be used to reproduce the original kinetic process; second, it can be applied to predict the other kinetic process. The aim of this paper is to attempt to prove that the common criteria are insufficient for meeting the above two purposes simultaneously. In this paper, the explicit Euler method and Taylor expansion are presented to numerically predict the kinetic process of linear heating reactions. The mean square error is introduced to assess the prediction results. The kinetic processes of hematite reduced to iron at different heating rates (8, 10 and 18 K/min) are utilized for validation and evaluation. The predicted results of the reduction of Fe2O3 → Fe3O4 indicated that the inferior linear correlation coefficient did provide better kinetic predicted curves. In conclusion, to satisfy the above two requirements of reproduction and prediction, the correlation coefficient is an insufficient criterion. In order to overcome this drawback, two kinds of numerical prediction methods are introduced, and the mean square error of the prediction is suggested as a superior criterion for evaluation.


Author(s):  
Chafic Achour ◽  
Naima Belayachi ◽  
Brahim Ismail

In view of the climate emergency and the need for energy transition, the use of materials with low environmental impact based on plant co-products or from recycling is strongly encouraged. Biobased materials have been developed in recent years and have shown interesting performances, particularly for the thermal insulation of buildings. Nevertheless, their use is still hampered by the lack of rules for their use and control of their behaviour in normal or accidental conditions of use such as excess water or fire. In this work, the behaviour of biocomposites based on cereal straw exposed to high temperatures was studied. The objective is to evaluate the effect of this temperature increase on the mechanical strength of the material and its thermal properties using different heating scenarios. The biocomposites considered for this study were developed as part of the PEPITE project funded by the “Region Centre Val de Loire”. They are materials composed of two different binders: lime, and plaster, straw aggregates and additives (air entraining agent, casein protein and biopolymer). In order to simulate fire, two temperatures were chosen for the study 200°C and 210°C, using four different heating rates to study their impact on the behaviour of dry and wet conditions of biocomposites. The purpose of this tests is to examine whether the material retains its insulating properties and its buildability. The results showed that the use of additives had negative effects on the behaviour of the materials with respect to temperature increase. Their use accelerates the degradation and burning of biocomposites faster than for samples without additives. Plaster based composites show a better behavior to high temperature than lime-based composites. Nevertheless, lime composites have a higher strength than plasters. Furthermore, the thermal conductivity of plaster is lower than that of lime. It should be noted that the heating rate has a significant impact on the behaviour of the material, the slower the rate, the more the material is degraded.


2022 ◽  
Vol 15 (1) ◽  
pp. 61-77
Author(s):  
Sabrina P. Cochrane ◽  
K. Sebastian Schmidt ◽  
Hong Chen ◽  
Peter Pilewskie ◽  
Scott Kittelman ◽  
...  

Abstract. Aerosol heating due to shortwave absorption has implications for local atmospheric stability and regional dynamics. The derivation of heating rate profiles from space-based observations is challenging because it requires the vertical profile of relevant properties such as the aerosol extinction coefficient and single-scattering albedo (SSA). In the southeastern Atlantic, this challenge is amplified by the presence of stratocumulus clouds below the biomass burning plume advected from Africa, since the cloud properties affect the magnitude of the aerosol heating aloft, which may in turn lead to changes in the cloud properties and life cycle. The combination of spaceborne lidar data with passive imagers shows promise for future derivations of heating rate profiles and curtains, but new algorithms require careful testing with data from aircraft experiments where measurements of radiation, aerosol, and cloud parameters are better colocated and readily available. In this study, we derive heating rate profiles and vertical cross sections (curtains) from aircraft measurements during the NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) project in the southeastern Atlantic. Spectrally resolved irradiance measurements and the derived column absorption allow for the separation of total heating rates into aerosol and gas (primarily water vapor) absorption. The nine cases we analyzed capture some of the co-variability of heating rate profiles and their primary drivers, leading to the development of a new concept: the heating rate efficiency (HRE; the heating rate per unit aerosol extinction). HRE, which accounts for the overall aerosol loading as well as vertical distribution of the aerosol layer, varies little with altitude as opposed to the standard heating rate. The large case-to-case variability for ORACLES is significantly reduced after converting from heating rate to HRE, allowing us to quantify its dependence on SSA, cloud albedo, and solar zenith angle.


Energy ◽  
2022 ◽  
pp. 123164
Author(s):  
Gongxiang Song ◽  
Dexin Huang ◽  
Hanjian Li ◽  
Xuepeng Wang ◽  
Qiangqiang Ren ◽  
...  

Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121917
Author(s):  
Qingqing Gan ◽  
Jiang Xu ◽  
Shoujian Peng ◽  
Fazhi Yan ◽  
Ruifang Wang ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 333
Author(s):  
Marcos Emmanuel Araújo Carreiro ◽  
Valmir José da Silva ◽  
Alisson Mendes Rodrigues ◽  
Ester Pires de Almeida Barbosa ◽  
Fabiana Pereira da Costa ◽  
...  

The firing parameters in ceramic masses incorporated with 0, 5, and 10 wt% of scheelite tailings were investigated. The ceramic masses were characterized by X-ray fluorescence, granulometric, mineralogical analysis, and Atterberg limits determination. The samples were obtained by uniaxial pressing (20 MPa), sintered at different temperatures (800, 900, and 1000 °C), and heating rates (5, 10, 15, and 20 °C∙min−1). Physical and mechanical tests (water absorption, apparent porosity, and flexural strength) and mineralogical tests were accomplished from the sintered samples. Natural aging tests were also carried out to assess carbonation resistance. For this, some samples were kept in an internal environment (inside the laboratory) for 3 months. The results showed a high content of calcium oxide in the scheelite tailings and a reduction in the plasticity index of the ceramic masses with the tailings addition. The best results were observed for the ceramic mass with 5% tailings. The best results were observed regarding the firing parameters for the temperature equal to 1000 °C, increasing the heating rate to 10 °C∙min−1 without compromising the material properties. The samples kept in an internal environment for 3 months showed a loss of physical and mechanical properties. Such behavior probably occurred due to the onset of the carbonation phenomenon.


Sign in / Sign up

Export Citation Format

Share Document