Mechanical properties and corrosion resistance of ultrafine grained austenitic stainless steel processed by hydrostatic extrusion

2017 ◽  
Vol 136 ◽  
pp. 34-44 ◽  
Author(s):  
Agnieszka Teresa Krawczynska ◽  
Witold Chrominski ◽  
Ewa Ura-Binczyk ◽  
Mariusz Kulczyk ◽  
Malgorzata Lewandowska
Alloy Digest ◽  
2021 ◽  
Vol 70 (3) ◽  

Abstract ATI 201 HP is a 200-series, Cr-Mn-Ni austenitic stainless steel. It is comparable to the Cr-Ni stainless steel types 301, 304, and 304L in many respects, and can even provide some advantages over the 18-8 grades in certain applications. Because it possess a very desirable combination of economy plus good mechanical properties and corrosion resistance, it has been used in a wide variety of consumer and transportation applications. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1332. Producer or source: ATI.


2007 ◽  
Vol 539-543 ◽  
pp. 4962-4967 ◽  
Author(s):  
Hiroyuki Kokawa ◽  
W.Z. Jin ◽  
Zhan Jie Wang ◽  
M. Michiuchi ◽  
Yutaka S. Sato ◽  
...  

Large amount of nitrogen addition into an austenitic stainless steel can improve the mechanical properties and corrosion resistance remarkably as far as the nitrogen is in solid solution. However, once the nitrogen precipitates as nitride, it results in deteriorations in the properties of the high nitrogen austenitic stain steel. During welding, a high nitrogen austenitic stainless steel is ready to precipitate rapidly immense amounts of chromium nitride in the heat affected zone (HAZ), as intergranular or cellular morphologies at or from grain boundaries into grain interiors. The nitride precipitation reduces seriously the local mechanical properties and corrosion resistance. The present authors have demonstrated that a thermomechanical-processing as grain boundary engineering (GBE) inhibited intergranular chromium carbide precipitation in the HAZ of a type 304 austenitic stainless steel during welding and improved the intergranular corrosion resistance drastically. In the present study, the thermomechanical-processing was applied to a high nitrogen austenitic stainless steel containing 1 mass% nitrogen to suppress the nitride precipitation at or from grain boundaries in the HAZ during welding by GBE. GBE increases the frequency of coincidence site lattice (CSL) boundaries in the material so as to improve the intergranular properties, because of strong resistance of CSL boundaries to intergranular deteriorations. The optimum parameters in the thermomechanical-processing brought a very high frequency of CSL boundaries in the high nitrogen austenitic stainless steel. The GBE suppressed the intergranular and cellular nitride precipitation in the HAZ of the high nitrogen austenitic stainless steel during welding.


Alloy Digest ◽  
1999 ◽  
Vol 48 (9) ◽  

Abstract ALZ 305 is an austenitic stainless steel with excellent formability and good corrosion resistance, toughness, and mechanical properties. The higher amount of nickel in this grade enables high deep-drawing deformation without intermediate annealing. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-762. Producer or source: ALZ nv.


Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract ALZ 316 is an austenitic stainless steel with good formability, corrosion resistance, toughness, and mechanical properties. It is the basic grade of the stainless steels, containing 2 to 3% molybdenum. After the 304 series, the molybdenum-containing stainless steels are the most widely used austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-756. Producer or source: ALZ nv.


Alloy Digest ◽  
2001 ◽  
Vol 50 (4) ◽  

Abstract ALZ 321 is an austenitic stainless steel with good cold formability, corrosion resistance, toughness, and mechanical properties. The addition of titanium improves the resistance to intergranular corrosion in welds and slower cooling sections. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, and machining. Filing Code: SS-821. Producer or source: ALZ nv.


Sign in / Sign up

Export Citation Format

Share Document