Large temperature coefficient of resistivity and magnetoresistance for polycrystalline La0.68Nd0.04Ca0.28MnO3 at low magnetic field

2021 ◽  
pp. 131243
Author(s):  
Yan Gao ◽  
Sheng'an Yang ◽  
Ji Ma ◽  
Hui Zhang ◽  
Yunrui Yang ◽  
...  
Alloy Digest ◽  
1971 ◽  
Vol 20 (10) ◽  

Abstract Carpenter HYMU 80 is an unoriented 80% nickel-iron-molybdenum alloy which offers extremely high initial permeability and maximum permeability with minimum hysteresis loss at low magnetic field strengths. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-5. Producer or source: Carpenter Technology Corporation. Originally published May 1953, revised October 1971.


2021 ◽  
Vol 502 (1) ◽  
pp. 1263-1278
Author(s):  
Richard Kooij ◽  
Asger Grønnow ◽  
Filippo Fraternali

ABSTRACT The large temperature difference between cold gas clouds around galaxies and the hot haloes that they are moving through suggests that thermal conduction could play an important role in the circumgalactic medium. However, thermal conduction in the presence of a magnetic field is highly anisotropic, being strongly suppressed in the direction perpendicular to the magnetic field lines. This is commonly modelled by using a simple prescription that assumes that thermal conduction is isotropic at a certain efficiency f < 1, but its precise value is largely unconstrained. We investigate the efficiency of thermal conduction by comparing the evolution of 3D hydrodynamical (HD) simulations of cold clouds moving through a hot medium, using artificially suppressed isotropic thermal conduction (with f), against 3D magnetohydrodynamical (MHD) simulations with (true) anisotropic thermal conduction. Our main diagnostic is the time evolution of the amount of cold gas in conditions representative of the lower (close to the disc) circumgalactic medium of a Milky-Way-like galaxy. We find that in almost every HD and MHD run, the amount of cold gas increases with time, indicating that hot gas condensation is an important phenomenon that can contribute to gas accretion on to galaxies. For the most realistic orientations of the magnetic field with respect to the cloud motion we find that f is in the range 0.03–0.15. Thermal conduction is thus always highly suppressed, but its effect on the cloud evolution is generally not negligible.


1995 ◽  
Vol 148 (1-2) ◽  
pp. 329-330 ◽  
Author(s):  
H. Kano ◽  
A. Okabe ◽  
K. Kagawa ◽  
A. Suzuki ◽  
T. Yaoi ◽  
...  

2007 ◽  
Vol 06 (03n04) ◽  
pp. 173-177
Author(s):  
YU. G. ARAPOV ◽  
S. V. GUDINA ◽  
G. I. HARUS ◽  
V. N. NEVEROV ◽  
N. G. SHELUSHININA ◽  
...  

The resistivity (ρ) of low mobility dilute 2D electron gas in an n- InGaAs / GaAs double quantum well (DQW) exhibits the monotonic "insulating-like" temperature dependence (dρ/dT < 0) at T = 1.8–70 K in zero magnetic field. This temperature interval corresponds to a ballistic regime (kBTτ/ħ > 0.1–3.5) for our samples, and the electron density is on an "insulating" side of the so-called B = 0 2D metal–insulator transition. We show that the observed features of localization and Landau quantization in a vicinity of the low magnetic-field-induced insulator–quantum Hall liquid transition is due to the σxy(T) anomalous T-dependence.


Sign in / Sign up

Export Citation Format

Share Document