ballistic regime
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 14)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 118 (47) ◽  
pp. e2113185118
Author(s):  
Philippa H. McGuinness ◽  
Elina Zhakina ◽  
Markus König ◽  
Maja D. Bachmann ◽  
Carsten Putzke ◽  
...  

Intense work studying the ballistic regime of electron transport in two-dimensional systems based on semiconductors and graphene had been thought to have established most of the key experimental facts of the field. In recent years, however, additional forms of ballistic transport have become accessible in the quasi–two-dimensional delafossite metals, whose Fermi wavelength is a factor of 100 shorter than those typically studied in the previous work and whose Fermi surfaces are nearly hexagonal in shape and therefore strongly faceted. This has some profound consequences for results obtained from the classic ballistic transport experiment of studying bend and Hall resistances in mesoscopic squares fabricated from delafossite single crystals. We observe pronounced anisotropies in bend resistances and even a Hall voltage that is strongly asymmetric in magnetic field. Although some of our observations are nonintuitive at first sight, we show that they can be understood within a nonlocal Landauer-Büttiker analysis tailored to the symmetries of the square/hexagonal geometries of our combined device/Fermi surface system. Signatures of nonlocal transport can be resolved for squares of linear dimension of nearly 100 µm, approximately a factor of 15 larger than the bulk mean free path of the crystal from which the device was fabricated.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2361
Author(s):  
John Stearns ◽  
Garret Moddel

Geometric diodes are planar conductors patterned asymmetrically to provide electrical asymmetry, and they have exhibited high-frequency rectification in infrared rectennas. These devices function by ballistic or quasi-ballistic transport in which the transport characteristics are sensitive to the device geometry. Common methods for predicting device performance rely on the assumption of totally ballistic transport and neglect the effects of electron momentum relaxation. We present a particle-in-cell Monte Carlo simulation method that allows the prediction of the current–voltage characteristics of geometric diodes operating quasi-ballistically, with the mean-free-path length shorter than the critical device dimensions. With this simulation method, we analyze a new diode geometry made from graphene that shows an improvement in rectification capability over previous geometries. We find that the current rectification capability of a given geometry is optimized for a specific mean-free-path length, such that arbitrarily large mean-free-path lengths are not desirable. These results present a new avenue for understanding geometric effects in the quasi-ballistic regime and show that the relationship between device dimensions and the carrier mean-free-path length can be adjusted to optimize device performance.


2021 ◽  
Author(s):  
Ngoc Duc Le ◽  
Brice Davier ◽  
Philippe Dollfus ◽  
Jerome Saint Martin

Abstract A Full Band Monte Carlo simulatorhas been developed to considerphonon transmission across interfaces disposedperpendicularlyto the heat flux. This solver of the Boltzmann transport equation does not require any assumption on the shape the phonon distribution and can naturally consider all phonon transport regimes from the diffusive to the fully ballistic regime. This simulatoris used to study single and double Si/Ge heterostructures from the micrometer scale downto the nanometer scale,i.e. in all phonon transport regime from fully diffusive toballistic.A methodology to determine the thermal conductivity atthermal interfaces is presented.


2021 ◽  
Author(s):  
Dinh Cong Nguyen ◽  
Minwook Kim ◽  
Muhammad Hussain ◽  
Van Huy Nguyen ◽  
Yeon-jae Lee ◽  
...  

Abstract The long mean free path close to a micrometer in encapsulated graphene enabled us to rectify currents ballistically at room temperature. In this study, we introduce a ballistic rectifier that resembles a diode bridge and is based on graphene encapsulated using hexagonal boron nitride. Our device’s asymmetric geometry combined with the exploitation of the ratcheting effect means that it can operate successfully and provides excellent performance. The device’s estimated responsivities at 38,000 V/W for holes and 23,000 V/W for electrons at room temperature, are among the highest values for a ballistic device reported to date. Due to the device’s zero threshold voltage, it is able to rectify Johnson noise signals converting thermal excitation to electrical energy at room temperature. The bandwidth of the device at the ballistic regime is estimated at ~ 1.1 GHz for holes and 2 GHz for electrons. The device developed in this study is an important step along an innovative pathway that will lead to harvesting electrical energy directly from thermal energy.


2021 ◽  
Author(s):  
Thomas Meunier ◽  
Paula Pérez Brunius ◽  
Javier Rodríguez Outerelo ◽  
Heather Furey ◽  
Amy Bower ◽  
...  

<p>The Deep Water Horizon oil spill has dramatically impacted the Gulf of Mexico from the seafloor to the surface. While dispersion of contaminants at the surface has been extensively studied, little is known about deep water dispersion properties. This study describes the results of the Deep Water Dispersion Experiment (DWDE), which consisted in the release of surface drifters and RAFOS floats drifting at 300 and 1500 dbar in the Gulf of Mexico. We show that surface diffusivity is elevated, and decreases with depth. The separation dependence of relative diffusivity follows a Richardson law at all depths. Time dependence of dispersion suggests a Richardson regime near the surface and a mixed Richardson/ballistic regime in depth at scales of [10-100 km]. Finite Scale Lyapunov Exponents and pair separation Kurtosis suggest the existence of a Lundgren regime at scales smaller than the Rossby radius near the surface, and at smaller scales in depth.</p>


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 362
Author(s):  
E. E. Torres-Miyares ◽  
G. Rojas-Lorenzo ◽  
J. Rubayo-Soneira ◽  
S. Miret-Artés

Stochastic wave function formalism is briefly introduced and applied to study the dynamics of open quantum systems; in particular, the diffusion of Xe atoms adsorbed on a Pt(111) surface. By starting from a Lindblad functional and within the microscopic Caldeira–Leggett model for linear dissipation, a stochastic differential equation (Ito^-type differential equation) is straightforwardly obtained. The so-called intermediate scattering function within the ballistic regime is obtained, which is observable in Helium spin echo experiments. An ideal two-dimensional gas has been observed in this regime, leading to this function behaving as a Gaussian function. The influence of surface–adsorbate interaction is also analyzed by using the potential of two interactions describing flat and corrugated surfaces. Very low surface coverages are considered and, therefore, the adsorbate–adsorbate interaction is safely neglected. Good agreement is observed when our numerical results are compared with the corresponding experimental results and previous standard Langevin simulations.


2021 ◽  
Author(s):  
Chang-woo Cho ◽  
Peipei Wang ◽  
Fangdong Tang ◽  
Sungkyun Park ◽  
Mingquan He ◽  
...  

Abstract Hydrodynamic fluidity in condensed matter physics has been experimentally demonstrated only in a limited number of compounds because of the stringent conditions that must be satisfied. Herein, we demonstrate the existence of hydrodynamic-like properties driven by the collective excitation of the Dirac fluid in the three-dimensional topological semimetal ZrTe5. By measuring the electrical and thermal properties in a wide temperature range, we find a regime satisfying phononic hydrodynamic-like characteristics with two representative experimental evidences: a faster evolution of the thermal conductivity than in the ballistic regime and the existence of a local maximum of the effective mean free path. In contrast to phononic hydrodynamics, the Wiedemann-Franz law is violated by about a factor of 100. Moreover, phonon-dragged anomalies are observed, which serve as a signature of the Dirac fluidity in this system.


Author(s):  
А.Н. Афанасьев ◽  
П.С. Алексеев ◽  
А.А. Грешнов ◽  
М.А. Семина

In conductors with a very small density of defects, electrons at low temperatures collide predominantly with a sample edges. Therefore, the ballistic regime of charge and heat transport is realized. The application of a perpendicular magnetic field substantially modifies the character of ballistic transport. For the case of two-dimensional (2D) electrons in the magnetic fields corresponding to the diameter of the cyclotron trajectories smaller than the sample width a hydrodynamic transport regime is formed. In the latter regime, the flow is mainly controlled by rare electron–electron collisions, which determine the viscosity effect. In this work, we study the ballistic flow of 2D electrons in long samples in magnetic fields up to the critical field of the transition to the hydrodynamic regime. From solution of the kinetic equation, we obtain analytical formulas for the profiles of the current density and the Hall electric field far and near the ballistic-hydrodynamic transition as well as for the longitudinal and Hall resistances in these ranges. Our theoretical results, apparently, describe the observed longitudinal resistance of pure graphene samples in the diapason of magnetic fields below the ballistic-hydrodynamic transition.


2020 ◽  
Vol 4 (2) ◽  
pp. 28 ◽  
Author(s):  
Maike Antonio Faustino dos Santos

Nowadays, the stochastic resetting process is an attractive research topic in stochastic process. At the same time, a series of researches on stochastic diffusion in complex structures introduced ways to understand the anomalous diffusion in complex systems. In this work, we propose a non-static stochastic resetting model in the context of comb structure that consists of a structure formed by backbone in x axis and branches in y axis. Then, we find the exact analytical solutions for marginal distribution concerning x and y axis. Moreover, we show the time evolution behavior to mean square displacements (MSD) in both directions. As a consequence, the model revels that until the system reaches the equilibrium, i.e., constant MSD, there is a Brownian diffusion in y direction, i.e., ⟨ ( Δ y ) 2 ⟩ ∝ t , and a crossover between sub and ballistic diffusion behaviors in x direction, i.e., ⟨ ( Δ x ) 2 ⟩ ∝ t 1 2 and ⟨ ( Δ x ) 2 ⟩ ∝ t 2 respectively. For static stochastic resetting, the ballistic regime vanishes. Also, we consider the idealized model according to the memory kernels to investigate the exponential and tempered power-law memory kernels effects on diffusive behaviors. In this way, we expose a rich class of anomalous diffusion process with crossovers among them. The proposal and the techniques applied in this work are useful to describe random walkers with non-static stochastic resetting on comb structure.


Sign in / Sign up

Export Citation Format

Share Document