Experimental Investigation on Near-dry EDM using Glycerin-Air Mixture as Dielectric Medium

2017 ◽  
Vol 4 (4) ◽  
pp. 5344-5350 ◽  
Author(s):  
Krishnakant Dhakar ◽  
Akshay Dvivedi
Author(s):  
Soham Mujumdar

Abstract There is a growing interest in developing the dry EDM process as a sustainable alternative to the conventional liquid dielectric-based EDM process. It is shown that the dry EDM process possesses advantages over the conventional process in terms of thermal damage, recast layer, and tool wear. However, there is a need to increase the productivity of the dry EDM process for its successful adaptation in the industry. This paper presents a model of dry EDM plasma discharge with air as the dielectric medium. The model uses global modeling (‘0D’) approach in which equations of mass balance, energy balance, and plasma expansion are solved simultaneously to obtain a time-dependent description of the plasma in terms of its composition, temperature, diameter, and heat flux to electrodes. The model includes reaction kinetics involving 622 reactions and 55 species to determine the air plasma composition. A single discharge dry EDM operation is successfully simulated using the model, and the effect of discharge current on the plasma is studied. An increase in the discharge current increases the electron density, temperature, and diameter of the plasma linearly, while heat flux to the workpiece increases exponentially. Overall, the model provides an essential tool to study the dry EDM process mechanisms at a fundamental level and devise methods for process improvements.


Author(s):  
Vaibhav Ganachari ◽  
Uday Chate ◽  
Laxman Waghmode ◽  
Prashant Jadhav ◽  
Satish Mullya ◽  
...  

2015 ◽  
Vol 3 (4) ◽  
Author(s):  
Arvind Pattabhiraman ◽  
Deepak Marla ◽  
Shiv G. Kapoor

A novel method of using atomized dielectric spray in micro-electric discharge machining (EDM) (spray-EDM) to reduce the consumption of dielectric is developed in this study. The atomized dielectric droplets form a moving dielectric film up on impinging the work surface that penetrates the interelectrode gap and acts as a single phase dielectric medium between the electrodes and also effectively removes the debris particles from the discharge zone. Single-discharge micro-EDM experiments are performed using three different dielectric supply methods, viz., conventional wet-EDM (electrodes submerged in dielectric medium), dry-EDM, and spray-EDM in order to compare the processes based on material removal, tool electrode wear, and flushing of debris from the interelectrode gap across a range of discharge energies. It is observed that spray-EDM produces higher material removal compared to the other two methods for all combinations of discharge parameters used in the study. The tool electrode wear using atomized dielectric is significantly better than dry-EDM and comparable to that observed in wet-EDM. The percentage of debris particles deposited within a distance of 100 μm from the center of EDM crater is also significantly reduced using the spray-EDM technique.


Author(s):  
Apurva A Kulkarni Et.al

Dry EDM may be a modification of the traditional electrical discharge machining (EDM) process during which the liquid dielectric is replaced by a gaseous medium. High velocity gas is supplied through it into the discharge gap. The flow of high velocity gas into the gap facilitates removal of debris and prevents excessive heating of the tool and work piece at the discharge spots. it's now known that aside from being an environment–friendly process, other advantages of the dry EDM process are low tool wear, lower discharge gap, lower residual stresses, smaller white layer and smaller heat affected zone.[1] Keeping literature review into consideration, during this research, an effort has been made by selecting compressed gas as a dielectric medium, with Hastelloy as a work piece material and copper as a tool electrode. Conventional experiments were also performed. Experiments are performed using Taguchi DoE orthogonal array to watch and analysis the consequences of various process parameters to optimize the response variables like material removal rate (MRR) and gear wear rate (TWR).


Sign in / Sign up

Export Citation Format

Share Document