Atomized Dielectric Spray-Based Electric Discharge Machining for Sustainable Manufacturing

2015 ◽  
Vol 3 (4) ◽  
Author(s):  
Arvind Pattabhiraman ◽  
Deepak Marla ◽  
Shiv G. Kapoor

A novel method of using atomized dielectric spray in micro-electric discharge machining (EDM) (spray-EDM) to reduce the consumption of dielectric is developed in this study. The atomized dielectric droplets form a moving dielectric film up on impinging the work surface that penetrates the interelectrode gap and acts as a single phase dielectric medium between the electrodes and also effectively removes the debris particles from the discharge zone. Single-discharge micro-EDM experiments are performed using three different dielectric supply methods, viz., conventional wet-EDM (electrodes submerged in dielectric medium), dry-EDM, and spray-EDM in order to compare the processes based on material removal, tool electrode wear, and flushing of debris from the interelectrode gap across a range of discharge energies. It is observed that spray-EDM produces higher material removal compared to the other two methods for all combinations of discharge parameters used in the study. The tool electrode wear using atomized dielectric is significantly better than dry-EDM and comparable to that observed in wet-EDM. The percentage of debris particles deposited within a distance of 100 μm from the center of EDM crater is also significantly reduced using the spray-EDM technique.

2015 ◽  
Author(s):  
Arvind Pattabhiraman ◽  
Deepak Marla ◽  
Shiv G. Kapoor

A novel method of using atomized dielectric spray in EDM to reduce the consumption of dielectric is developed in this study. The atomized dielectric droplets form a moving dielectric film up on impinging the work surface that penetrates the inter-electrode gap and acts as a single phase dielectric medium between the electrodes and also effectively removes the debris particles from the discharge zone. EDM experiments are performed using three different dielectric supply methods, viz., conventional wet-EDM (electrodes submerged in dielectric medium), dry-EDM and spray-EDM in order to compare the processes based on material removal, tool electrode wear and flushing of debris from the inter-electrode gap across a range of discharge energies. It is observed that spray-EDM produces higher material removal compared to the other two methods for all combinations of discharge parameters used in the study. The tool electrode wear using atomized dielectric is significantly better than dry-EDM and comparable to that observed in conventional wet-EDM. The percentage of debris particles deposited within a distance of 100 μm from the center of EDM crater is also significantly reduced using the atomized dielectric spray EDM technique.


2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Arvind Pattabhiraman ◽  
Deepak Marla ◽  
Shiv G. Kapoor

A computational model to investigate the flushing of electric discharge machining (EDM) debris from the interelectrode gap during the spray-EDM process is developed. Spray-EDM differs from conventional EDM in that an atomized dielectric spray is used to generate a thin film that penetrates the interelectrode gap. The debris flushing in spray-EDM is investigated by developing models for three processes, viz., dielectric spray formation, film formation, and debris flushing. The range of spray system parameters including gas pressure and impingement angle that ensure formation of dielectric film on the surface is identified followed by the determination of dielectric film thickness and velocity. The debris flushing in conventional EDM with stationary dielectric and spray-EDM processes is then compared. It is observed that the dielectric film thickness and velocity play a significant role in removing the debris particles from the machining region. The model is used to determine the spray conditions that result in enhanced debris flushing with spray-EDM.


Author(s):  
Jagtar Singh ◽  
Gurminder Singh ◽  
Pulak M Pandey

The present investigation addresses the machining outcome of electric discharge machining using a rapid manufactured complex shape copper electrode. Developed rapid manufacturing technique using an amalgamation of polymer 3D printing and pressureless sintering of loose powder as rapid tooling has been used to fabricate copper electrode from the computer-aided design model of the desired shape. The fabricated electrode was used for the electric discharge machining of the D-2 steel workpiece. Central composite design was employed to study the electric discharge machining parameters (pulse duration, duty cycle and peak current) effect on the electric discharge machining characteristics such as material removal rate, electrode wear rate and cavity dimensional deviation as overcut from electrode computer-aided design model. Analysis of variance was executed to attain significant parameters along with interactions. Peak current was found to be the utmost dominating parameter for three responses. The high percentage of carbon was observed on the electrode surface after electric discharge machining at the high level of pulse duration and resulted in low electrode wear rate. The high percentage of dimensional deviation was noticed at the maximum duty cycle and maximum peak current by the substantial interactions. Genetic algorithm-based multi-objective optimization was employed for the electric discharge machining parameters optimization to maximize material removal rate, minimize electrode wear rate and dimensional deviation. The multi-feature complex copper electrode was fabricated and used for electric discharge machining as the case study to check the efficacy of the optimized process. It was witnessed that the process was competent to fabricate complex shape cavity as per the desired computer-aided design model shape with efficient material removal rate and electrode wear rate.


Sign in / Sign up

Export Citation Format

Share Document