Modeling of Dry-EDM Plasma Discharge

Author(s):  
Soham Mujumdar

Abstract There is a growing interest in developing the dry EDM process as a sustainable alternative to the conventional liquid dielectric-based EDM process. It is shown that the dry EDM process possesses advantages over the conventional process in terms of thermal damage, recast layer, and tool wear. However, there is a need to increase the productivity of the dry EDM process for its successful adaptation in the industry. This paper presents a model of dry EDM plasma discharge with air as the dielectric medium. The model uses global modeling (‘0D’) approach in which equations of mass balance, energy balance, and plasma expansion are solved simultaneously to obtain a time-dependent description of the plasma in terms of its composition, temperature, diameter, and heat flux to electrodes. The model includes reaction kinetics involving 622 reactions and 55 species to determine the air plasma composition. A single discharge dry EDM operation is successfully simulated using the model, and the effect of discharge current on the plasma is studied. An increase in the discharge current increases the electron density, temperature, and diameter of the plasma linearly, while heat flux to the workpiece increases exponentially. Overall, the model provides an essential tool to study the dry EDM process mechanisms at a fundamental level and devise methods for process improvements.

Author(s):  
Apurva A Kulkarni Et.al

Dry EDM may be a modification of the traditional electrical discharge machining (EDM) process during which the liquid dielectric is replaced by a gaseous medium. High velocity gas is supplied through it into the discharge gap. The flow of high velocity gas into the gap facilitates removal of debris and prevents excessive heating of the tool and work piece at the discharge spots. it's now known that aside from being an environment–friendly process, other advantages of the dry EDM process are low tool wear, lower discharge gap, lower residual stresses, smaller white layer and smaller heat affected zone.[1] Keeping literature review into consideration, during this research, an effort has been made by selecting compressed gas as a dielectric medium, with Hastelloy as a work piece material and copper as a tool electrode. Conventional experiments were also performed. Experiments are performed using Taguchi DoE orthogonal array to watch and analysis the consequences of various process parameters to optimize the response variables like material removal rate (MRR) and gear wear rate (TWR).


2021 ◽  
Author(s):  
Ghazanfar Mehdi ◽  
Maria Grazia De Giorgi ◽  
Donato Fontanarosa ◽  
Sara Bonuso ◽  
Antonio Ficarella

Abstract This study focused on the comparative analysis about the production of ozone and active radicals in presence of nanopulsed plasma discharge on air and on fuel/air mixture to investigate its effect on combustion enhancement. This analysis is based on numerical modeling of air and methane/air plasma discharge with different repetition rates (100 Hz, 1000 Hz and 10000 Hz). To this purpose, a two-step approach has been proposed based on two different chemistry solvers: a 0-D plasma chemistry solver (ZDPlasKin toolbox) and a combustion chemistry solver (CHEMKIN software suite). Consequently, a comprehensive chemical kinetic scheme was generated including both plasma excitation reactions and gas phase reactions. Validation of air and methane/air mechanisms was performed with experimental data. Kinetic models of both air and methane/air provides good fitting with experimental data of O atom generation and decay process. ZDPlasKin results were introduced in CHEMKIN in order to analyze combustion enhancement. It was found that the concentrations of O3 and O atom in air are higher than the methane/air activation. However, during the air activation peak concentration of ozone was significantly increased with repetition rates and maximum was observed at 10000 Hz. Furthermore, ignition timings and flammability limits were also improved with air and methane/air activation but the impact of methane/air activation was comparatively higher.


Author(s):  
Anshuman Kumar Sahu ◽  
Siba Sankar Mahapatra

In this chapter, the EDM process is performed by taking titanium alloy as work piece and AlSiMg prepared by selective laser sintering (SLS) process as tool electrode along with copper and graphite. The EDM is performed by varying different process parameters like voltage (V), discharge current (Ip), duty cycle (τ), and pulse-on-time (Ton). The surface roughness parameters like Ra, Rt, and Rz are measured by the use of surface roughness measurement machine. To reduce the number of experiments, design of experiment (DOE) approach like Taguchi's L27 orthogonal array has been used. The surface properties of the EDM specimen are optimized by desirability function approach, TOPSIS and VIKOR method, and the best parametric setting is reported for the EDM process. All the optimization techniques convergence to the same optimal parametric setting. The type of tool is the most significant parameter followed by discharge current and voltage. Better surface finish of EDM specimen is produced with lower level of parametric setting along with the use of AlSiMg RP electrode during EDM.


Author(s):  
Arvind Kumar Dixit ◽  
Richa Awasthi

Titanium aluminide reinforced aluminium based metal matrix nano composite was prepared by stir casting route. Experiments were conducted with Cu electrode using L9 orthogonal array based on the Taguchi method. Discharge current (Lv), Pulse on time (Ton) and Flushing pressure (FP) are selected to calculate Metal removal rate (MRR), Tool wear rate (TWR) and Surface roughness (SR) based on Taguchi's parameter design. Moreover, the signal-to-noise ratios associated with the observed values in the experiments were determined using MINITAB software for MRR, TWR and SR. PCR – TOPSIS method is used to optimize Taguchi's multi response. Optimum parameter setting is found at Discharge current (Lv) 10 A, Pulse on time (Ton) 150 µs and Flushing pressure (FP) 1 kg/cm2.


2017 ◽  
Vol 4 (4) ◽  
pp. 5344-5350 ◽  
Author(s):  
Krishnakant Dhakar ◽  
Akshay Dvivedi

2012 ◽  
Vol 462 ◽  
pp. 109-115
Author(s):  
Zhen Long Wang ◽  
Bao Cheng Xie ◽  
Yu Kui Wang ◽  
Wan Sheng Zhao

A numerical model of cathode erosion in EDM process using finite element method is presented. Using this model, numerical simulation of the single spark of EDM process has been carried out with parameters such as conduction, convection, the latent heat of phase change, thermal properties of material with temperature and gauss distribution of heat flux to predict the temperature distribution in the discharge point of cathode as a result of single discharges in EDM process. The simulation result shows the trend of dynamic temperature distribution of heat -affected zone and well explains mechanism of material removal in EDM process.


1985 ◽  
Vol 57 (11) ◽  
pp. 5102-5104 ◽  
Author(s):  
C. S. Wong ◽  
S. Lee

2016 ◽  
Vol 685 ◽  
pp. 657-661 ◽  
Author(s):  
Ludmila N. Shiyan ◽  
Alexey G. Zherlitsyn ◽  
Seda O. Magomadova ◽  
Cyril S. Lazar

This paper reports about results describing the mechanism of oxidation-reduction reactions occurring in the microwave plasma interaction with organic compounds solutions. Air and argon were used as the plasma gases in the experiments on disrupture of aqueous liquid organic compounds. Application of inversible redox indicator of methylene blue (MB) showed that disrupture of organic substances in microwave plasma was based on redox reactions. It was found that MB highest efficiency in the solution took place when air plasma-supporting gas was used.


2014 ◽  
Vol 37 (2) ◽  
pp. 620-626 ◽  
Author(s):  
Caixia Jia ◽  
Ping Chen ◽  
Qian Wang ◽  
Jing Wang ◽  
Xuhai Xiong ◽  
...  

Author(s):  
Jia Tao ◽  
Albert J. Shih ◽  
Jun Ni

This study investigates the dry and near-dry electrical discharge machining (EDM) milling to achieve a high material removal rate (MRR) and fine surface finish for roughing and finishing operations, respectively. Dry EDM uses gas and near-dry EDM applies a liquid-gas mixture as the dielectric medium. Experimental studies leading to the selection of oxygen gas and copper electrode for high MRR dry EDM and the nitrogen-water mixture and graphite electrode for fine surface finish near-dry EDM are presented. Near-dry EDM exhibits the advantage of good machining stability and surface finish under low discharge energy input. A 25−1 fractional factorial design is applied to investigate the effect of discharge current, pulse duration, and pulse interval on the MRR and surface finish in dry and near-dry EDMs. Lower pulse duration and lower discharge current are identified as key factors for improving the surface finish in near-dry EDM.


Sign in / Sign up

Export Citation Format

Share Document