Effect of graphite and molybdenum disulfide on AA 2024 reinforced with slag and calcium carbonate hybrid metal matrix composites

2020 ◽  
Vol 26 ◽  
pp. 3615-3622 ◽  
Author(s):  
N. Iyandurai ◽  
P. Duraisamy ◽  
M. Mahendra Boopathi ◽  
M. Muniyappan
2018 ◽  
Vol 167 ◽  
pp. 02010 ◽  
Author(s):  
İsmail Ovalı ◽  
Cemal Esen ◽  
Sevda Albayrak ◽  
Halil Karakoç

In the present study, hybrid metal matrix composites, Al2024/10Al2O3, Al2024/10Al2O3/3MgO, Al2024/10Al2O3/6MgO, Al2024/10Al2O3/3MgO/1.5 Gr, Al2024/10Al2O3/3MgO/3Gr, and reinforcement samples (AA 2024) produced with powder metallurgy process. AA 2024 and reinforcement powders were determined mixture rations and separately mixed during 30 minutes in a three-dimensional Turbula mixer. The mixed compositions were pressed at 300 MPa and sintered at 550°C during 1 h. After that, three materials were extruded at the same temperature. Experimental results show that hybrid metal matrix composites (HMMCs) a better wear resistance than the reinforcement samples because of higher hardness. Gr behave as a lubricant during wear process. The wear resistance of HMMCs can be optimized with controlling of the reinforcement content and type.


2021 ◽  
Author(s):  
Muniyappan Mani ◽  
Iyandurai Natesan

Abstract This research work focuses on the formation of AA2024-carbon nanotubes-silicon hybrid metal matrix composites. Structure morphology, structural characterization, elemental identification and dielectric properties of AA 2024 in the presence of carbon nanotubes, silicon and its combinations at various proportions were evaluated using SEM, XRD, EDX and Hioki 3532-50 LCR Hi-Tester. A two-stage stir casting method was used for the fabrication of AA2024 hybrid metal matrix composites. It was observed that the size of the AA 2024 + 4% CNT + 2% Si composite was found to be 23.6 nm, this shows enhanced results than other composites prepared. Dielectric properties of composites were characterized as a function of composition and frequency. It was found that the dielectric constant, dielectric loss and dissipation factor decreases smoothly with an increase of reinforcements and also frequency.


2020 ◽  
Vol 33 ◽  
pp. 1144-1148
Author(s):  
B. Suresh Babu ◽  
P. Prathap ◽  
T. Balaji ◽  
D. Gowtham ◽  
S.D. Sree Adi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document