Effect of process control agent and mechanical milling on the embedment and uniform dispersion of CNTs and B4C in aluminium matrix

Author(s):  
Mohd Rizwan Jafar ◽  
D.S. Nagesh
2014 ◽  
Vol 29 ◽  
pp. 121-127 ◽  
Author(s):  
A. Zolriasatein ◽  
Xin Lin Yan ◽  
P. Rogl ◽  
A. Shokuhfar ◽  
S. Paschen

Nanostructured Ba-Cu-Si clathrate powders were synthesized by mechanical milling using different amounts of process control agent (PCA). We investigated systematically the effects of PCA on the phase constitution and crystallite size of nanopowders using X-ray diffraction (XRD) as well as the particle size and morphology by scanning electron microscopy (SEM). The PCA increases the powder yield by reducing the powder agglomeration. No detectable reaction occurred between the PCA and the clathrate phase, and thus the composition of the clathrate phase is unchanged after milling. Compared to the powders milled without PCA, the crystalline size of powders with PCA is reduced from about 70 to about 50 nm.


2019 ◽  
Vol 740-741 ◽  
pp. 130-136 ◽  
Author(s):  
Jun Shi ◽  
Aofeng Zheng ◽  
Zehui Lin ◽  
Rong Chen ◽  
Jugong Zheng ◽  
...  

2008 ◽  
Vol 22 (18n19) ◽  
pp. 2933-2938 ◽  
Author(s):  
H. BAHMANPOUR ◽  
S. HESHMATI-MANESH

High energy ball milling was performed on a mixture of titanium and aluminum elemental powders with a composition of Ti -48(at.%) Al . Stearic acid was added to this powder mixture as a process control agent (PCA) to study its effect on the microstructure evolution and crystallite size of the milled powder after various milling times. Phase compositions and morphology of the milled powders were evaluated using X-ray diffraction and scanning electron microscopy. Crystallite sizes of milled powders were determined by Cauchy-Gaussian approach using XRD profiles. It was shown that addition of 1wt.% of stearic acid not only minimizes the adhesion of milling product to the vial and balls, but also reduces its crystallite sizes. It has also a marked effect on the morphology of the final product.


Sign in / Sign up

Export Citation Format

Share Document