African buffalo optimized multinomial softmax regression based convolutional deep neural network for software fault prediction

Author(s):  
P. Saravanan ◽  
V. Sangeetha
2019 ◽  
Vol 10 (4) ◽  
pp. 1-19
Author(s):  
Osama Al Qasem ◽  
Mohammed Akour

Software faults prediction (SFP) processes can be used for detecting faulty constructs at early stages of the development lifecycle, in addition to its being used in several phases of the development process. Machine learning (ML) is widely used in this area. One of the most promising subsets from ML is deep learning that achieves remarkable performance in various areas. Two deep learning algorithms are used in this paper, the Multi-layer perceptrons (MLPs) and Convolutional Neural Network (CNN). In order to evaluate the studied algorithms, four commonly used datasets from NASA are used i.e. (PC1, KC1, KC2 and CM1). The experiment results show how the CNN algorithm achieves prediction superiority of the MLP algorithm. The accuracy and detection rate measurements when using CNN has reached the standard ratio respectively as follows: PC1 97.7% - 73.9%, KC1 100% - 100%, KC2 99.3% - 99.2% and CM1 97.3% - 82.3%. This study provides promising results in using the deep learning for software fault prediction research.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Yeresime Suresh ◽  
Lov Kumar ◽  
Santanu Ku. Rath

Experimental validation of software metrics in fault prediction for object-oriented methods using statistical and machine learning methods is necessary. By the process of validation the quality of software product in a software organization is ensured. Object-oriented metrics play a crucial role in predicting faults. This paper examines the application of linear regression, logistic regression, and artificial neural network methods for software fault prediction using Chidamber and Kemerer (CK) metrics. Here, fault is considered as dependent variable and CK metric suite as independent variables. Statistical methods such as linear regression, logistic regression, and machine learning methods such as neural network (and its different forms) are being applied for detecting faults associated with the classes. The comparison approach was applied for a case study, that is, Apache integration framework (AIF) version 1.6. The analysis highlights the significance of weighted method per class (WMC) metric for fault classification, and also the analysis shows that the hybrid approach of radial basis function network obtained better fault prediction rate when compared with other three neural network models.


Author(s):  
Fatemeh Alighardashi ◽  
Mohammad Ali Zare Chahooki

Improving the software product quality before releasing by periodic tests is one of the most expensive activities in software projects. Due to limited resources to modules test in software projects, it is important to identify fault-prone modules and use the test sources for fault prediction in these modules. Software fault predictors based on machine learning algorithms, are effective tools for identifying fault-prone modules. Extensive studies are being done in this field to find the connection between features of software modules, and their fault-prone. Some of features in predictive algorithms are ineffective and reduce the accuracy of prediction process. So, feature selection methods to increase performance of prediction models in fault-prone modules are widely used. In this study, we proposed a feature selection method for effective selection of features, by using combination of filter feature selection methods. In the proposed filter method, the combination of several filter feature selection methods presented as fused weighed filter method. Then, the proposed method caused convergence rate of feature selection as well as the accuracy improvement. The obtained results on NASA and PROMISE with ten datasets, indicates the effectiveness of proposed method in improvement of accuracy and convergence of software fault prediction.


Sign in / Sign up

Export Citation Format

Share Document