artificial surface
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 52)

H-INDEX

24
(FIVE YEARS 4)

2021 ◽  
Vol 13 (24) ◽  
pp. 5139
Author(s):  
Aurélie Michel ◽  
Carlos Granero-Belinchon ◽  
Charlène Cassante ◽  
Paul Boitard ◽  
Xavier Briottet ◽  
...  

The monitoring of the Land Surface Temperature (LST) by remote sensing in urban areas is of great interest to study the Surface Urban Heat Island (SUHI) effect. Thus, it is one of the goals of the future spaceborne mission TRISHNA, which will carry a thermal radiometer onboard with four bands at a 60-m spatial resolution, acquiring daytime and nighttime. In this study, TRISHNA-like data are simulated from Airborne Hyperspectral Scanner (AHS) data over the Madrid urban area at 4-m resolution. To retrieve the LST, the Temperature and Emissivity Separation (TES) algorithm is applied with four spectral bands considering two main original approaches compared with the classical TES algorithm. First, calibration and validation datasets with a large number of artificial materials are considered (called urban-oriented database), contrary to most of the previous studies that do not use a large number of artificial material spectra during the calibration step, thus impacting the LST retrieval over these materials. This approach produces one TES algorithm with one empirical relationship, called 1MMD TES. Second, two empirical relationships are used, one for the artificial materials and the other for the natural ones. These relationships are defined thanks to two calibration datasets (artificial-surface-oriented database and natural-surface-oriented database, respectively), one containing mainly artificial materials and the other mainly natural ones. Finally, in order to use two empirical relationships, a ground cover classification map is given to the TES algorithm to separate artificial pixels from natural ones. This approach produces one material-oriented TES algorithm with two empirical relationships, called 2MMD TES. In order to perform a complete comparison of these two addenda in the TES algorithm and their impact on the LST retrieval, both AHS and TRISHNA spatial resolutions are studied, i.e., 4-m and 60-m resolutions, respectively. Relative to the calibration of the TES algorithm, we conclude that (1) the urban-oriented database is more representative of the urban areas than previous databases from the state-of-the-art, and (2) using two databases (artificial-surface-oriented and natural-surface-oriented) instead of one prevents the overestimation of the LST over natural materials and the underestimation over artificial ones. Thus, for both studied spatial resolutions (AHS and TRISHNA), we find that the 2MMD TES outperforms the 1MMD TES. This difference is especially important for artificial materials, corroborating the above conclusion. Furthermore, the comparison with ground measurements shows that, on 4-m spatial resolution images, the 2MMD TES outperforms both the 1MMD TES and the TES from the state-of-the-art used in this study. Finally, we conclude that the 2MMD TES method, with only four spectral bands, better retrieves the LST over artificial and natural materials and that the future TRISHNA sensor is suited for the monitoring of the LST over urban areas and the SUHI effect.


2021 ◽  
Vol 90 ◽  
pp. 105489
Author(s):  
Daisy Ferraro ◽  
Sorin Siegler ◽  
Claudio Belvedere ◽  
Maria Ruiz ◽  
Alberto Leardini

Author(s):  
Weiqian Chi ◽  
Wenjing Wang ◽  
Chengqi Sun

Additively manufactured (AM) alloy usually inevitably contains defects during the manufacturing processor or service process. Defects, as a harmful factor, could significantly reduce the fatigue performance of materials. This paper shows that the location and introduced form of defects play an important role in high cycle and very high cycle fatigue (VHCF) behavior of selective laser melting Ti-6Al-4V alloy. S-N curve descends linearly for internal defects induced failure. While for artificial surface defects induced failure, S-N curve descends at first and then exhibits a plateau region feature. We also observed competition of interior crack initiation with the fine granular area feature in VHCF regime. The paper indicates that only the size or the stress intensity factor range of the defect is not an appropriate parameter describing the effect of defects on the fatigue crack initiation. Finally, the effect of artificial surface defects on high cycle and VHCF strength is modeled, i.e. the fatigue strength   σ, fatigue life  N and defect size area (square root of projection area of defect perpendicular to principal stress direction) is expressed as  σ = CN ( area)  for  N and  σ = CN ( area)  for  N≥N, where  C,  a and  n are constants, N is the number of cycles at the knee point.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0257820
Author(s):  
Kate Horan ◽  
Kieran Kourdache ◽  
James Coburn ◽  
Peter Day ◽  
Henry Carnall ◽  
...  

Horseshoes influence how horses’ hooves interact with different ground surfaces, during the impact, loading and push-off phases of a stride cycle. Consequently, they impact on the biomechanics of horses’ proximal limb segments and upper body. By implication, different shoe and surface combinations could drive changes in the magnitude and stability of movement patterns in horse-jockey dyads. This study aimed to quantify centre of mass (COM) displacements in horse-jockey dyads galloping on turf and artificial tracks in four shoeing conditions: 1) aluminium; 2) barefoot; 3) GluShu; and 4) steel. Thirteen retired racehorses and two jockeys at the British Racing School were recruited for this intervention study. Tri-axial acceleration data were collected close to the COM for the horse (girth) and jockey (kidney-belt), using iPhones (Apple Inc.) equipped with an iOS app (SensorLog, sample rate = 50 Hz). Shoe-surface combinations were tested in a randomized order and horse-jockey pairings remained constant. Tri-axial acceleration data from gallop runs were filtered using bandpass Butterworth filters with cut-off frequencies of 15 Hz and 1 Hz, then integrated for displacement using Matlab. Peak displacement was assessed in both directions (positive ‘maxima’, negative ‘minima’) along the cranio-caudal (CC, positive = forwards), medio-lateral (ML, positive = right) and dorso-ventral (DV, positive = up) axes for all strides with frequency ≥2 Hz (mean = 2.06 Hz). Linear mixed-models determined whether surfaces, shoes or shoe-surface interactions (fixed factors) significantly affected the displacement patterns observed, with day, run and horse-jockey pairs included as random factors; significance was set at p<0.05. Data indicated that surface-type significantly affected peak COM displacements in all directions for the horse (p<0.0005) and for all directions (p≤0.008) but forwards in the jockey. The largest differences were observed in the DV-axis, with an additional 5.7 mm and 2.5 mm of downwards displacement for the horse and jockey, respectively, on the artificial surface. Shoeing condition significantly affected all displacement parameters except ML-axis minima for the horse (p≤0.007), and all displacement parameters for the jockey (p<0.0005). Absolute differences were again largest vertically, with notable similarities amongst displacements from barefoot and aluminium trials compared to GluShu and steel. Shoe-surface interactions affected all but CC-axis minima for the jockey (p≤0.002), but only the ML-axis minima and maxima and DV-axis maxima for the horse (p≤0.008). The results support the idea that hoof-surface interface interventions can significantly affect horse and jockey upper-body displacements. Greater sink of hooves on impact, combined with increased push-off during the propulsive phase, could explain the higher vertical displacements on the artificial track. Variations in distal limb mass associated with shoe-type may drive compensatory COM displacements to minimize the energetic cost of movement. The artificial surface and steel shoes provoked the least CC-axis movement of the jockey, so may promote greatest stability. However, differences between horse and jockey mean displacements indicated DV-axis and CC-axis offsets with compensatory increases and decreases, suggesting the dyad might operate within displacement limits to maintain stability. Further work is needed to relate COM displacements to hoof kinematics and to determine whether there is an optimum configuration of COM displacement to optimise performance and minimise injury.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rémi Lemoy ◽  
Geoffrey Caruso

AbstractWe determine the functional form and scaling law of radial artificial land use profiles in 300 European functional urban areas (FUAs). These profiles, starting from a fully artificial surface in the city center, decrease exponentially, the faster the smaller the city. More precisely, the characteristic decrease distance scales like the square root of total population, meaning that the artificial surface of cities is proportional to their population. This also means that the amount of artificial land per capita is independent of city size, and that larger cities are not more or less parsimonious in terms of land use than smaller ones.


Author(s):  
Weiqian Chi ◽  
Wenjing Wang ◽  
Chengqi Sun

Additively manufactured (AM) alloy usually inevitably contains defects during manufacturing processor in service. Defects, as a harmful factor, could significantly reduce the fatigue performance of materials. This paper shows that the location and introduced form of defects play an important role in high cycle and very high cycle fatigue (VHCF) behavior of selective laser melting Ti-6Al-4V alloy. The fatigue life descends linearly with stress amplitude for interior defect induced failure. While for artificial surface defect induced failure, the fatigue life descends at first, and then exhibits a plateau region feature. We also observed competition of interior crack initiation with fine granular area feature in VHCF regime. The paper indicates that only the size or the stress intensity factor range of the defect is not an appropriate parameter describing the effect of defect on the fatigue crack initiation. Finally, the effect of artificial surface defect on high cycle and VHCF strength is modeled, i.e. the fatigue strength  σ, fatigue life  N and defect size ( area)  (square root of projection area of defect perpendicular to principal stress direction) is expressed as  σ= CN( area) for  N0 and  σ= CN ( area) for  N≥N , where  C,  a and  n are constants, N  is the number of cycles at the knee point.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2588
Author(s):  
Kate Horan ◽  
James Coburn ◽  
Kieran Kourdache ◽  
Peter Day ◽  
Dan Harborne ◽  
...  

Understanding the effect of horseshoe–surface combinations on hoof kinematics at gallop is relevant for optimising performance and minimising injury in racehorse–jockey dyads. This intervention study assessed hoof breakover duration in Thoroughbred ex-racehorses from the British Racing School galloping on turf and artificial tracks in four shoeing conditions: aluminium, barefoot, aluminium–rubber composite (GluShu) and steel. Shoe–surface combinations were tested in a randomized order and horse–jockey pairings (n = 14) remained constant. High-speed video cameras (Sony DSC-RX100M5) filmed the hoof-ground interactions at 1000 frames per second. The time taken for a hoof marker wand fixed to the lateral hoof wall to rotate through an angle of 90 degrees during 384 breakover events was quantified using Tracker software. Data were collected for leading and non-leading forelimbs and hindlimbs, at gallop speeds ranging from 23–56 km h−1. Linear mixed-models assessed whether speed, surface, shoeing condition and any interaction between these parameters (fixed factors) significantly affected breakover duration. Day and horse–jockey pair were included as random factors and speed was included as a covariate. The significance threshold was set at p < 0.05. For all limbs, breakover times decreased as gallop speed increased (p < 0.0005), although a greater relative reduction in breakover duration for hindlimbs was apparent beyond approximately 45 km h−1. Breakover duration was longer on turf compared to the artificial surface (p ≤ 0.04). In the non-leading hindlimb only, breakover duration was affected by shoeing condition (p = 0.025) and an interaction between shoeing condition and speed (p = 0.023). This work demonstrates that speed, ground surface and shoeing condition are important factors influencing the galloping gait of the Thoroughbred racehorse.


Author(s):  
Kate Horan ◽  
James Coburn ◽  
Kieran Kourdache ◽  
Peter Day ◽  
Dan Harborne ◽  
...  

Understanding the effect of horseshoe-surface combinations on hoof kinematics at gallop is relevant for optimising performance and minimising injury in racehorse-jockey dyads. This intervention study assessed hoof breakover duration in Thoroughbred ex-racehorses from the British Racing School galloping on turf and artificial tracks in four shoeing conditions: barefoot, aluminium-rubber composite (GluShu), aluminium and steel. Shoe-surface combinations were tested in a randomized order and horse-rider pairings (n=14) remained constant. High-speed video cameras (Sony DSC-RX100M5) filmed the hoof-ground interactions at 1000 frames per second. The time taken for a hoof marker wand fixed to the lateral hoof wall to rotate through an angle of 90 degrees during 384 breakover events was quantified using Tracker software. Data were collected for leading and non-leading front and hind limbs, at gallop speeds ranging from 23&ndash;56 km h-1. Linear mixed-models assessed whether speed, surface, shoeing condition or any interaction between these parameters (fixed factors) significantly affected breakover duration. Day and horse-rider pair were included as random factors and speed was included as a covariate. The significance threshold was set at p&amp;lt;0.05. For all limbs, breakover times decreased as gallop speed increased (p&amp;lt;0.0005), although a greater relative reduction in breakover duration for hindlimbs was apparent beyond approximately 45 km h-1. Breakover duration was longer on turf compared to the artificial surface (p&le;0.04). In the non-leading hindlimb only, breakover duration was affected by shoeing condition (p=0.025) and an interaction between shoeing condition and speed (p=0.023). Future work seeks to relate these results to hoof accelerometer data.


2021 ◽  
Vol 13 (16) ◽  
pp. 8840
Author(s):  
Raquel Faria de Deus ◽  
José António Tenedório

In this study, past and current land-use and land-cover (LULC) change trajectories between 1947 and 2018 were analysed in terms of sustainability using a unique set of nine detailed, high-precision LULC thematic maps for the municipality of Portimão (Algarve region), Portugal. Several Geographic Information System (GIS)-based spatial analysis techniques were used to process LULC data and assess the spatiotemporal dynamics of LULC change processes. The dynamics of LULC change were explored by analysing LULC change trajectories. In addition, spatial pattern metrics were introduced to further investigate and quantify the spatial patterns of such LULC change trajectories. The findings show that Portimão has been experiencing complex LULC changes. Nearly 52% of the study area has undergone an LULC change at least once during the 71-year period. The analysis of spatial pattern metrics on LULC change trajectories confirmed the emergence of more complex, dispersed, and fragmented shapes when patches of land were converted from non-built categories into artificial surface categories from 1947 to 2018. The combined analysis of long-term LULC sequences by means of LULC change trajectories and spatial pattern metrics provided useful, actionable, and robust empirical information that can support sustainable spatial planning and smart growth, which is much needed since the results of this study have shown that the pattern of LULC change trajectories in Portimão municipality has been heading towards unsustainability.


Sign in / Sign up

Export Citation Format

Share Document