Damage detection of warren truss bridge using frequency change correlation

Author(s):  
Varsha Patil ◽  
Dhiraj Ahiwale
Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 422-445
Author(s):  
Md Riasat Azim ◽  
Mustafa Gül

Railway bridges are an integral part of any railway communication network. As more and more railway bridges are showing signs of deterioration due to various natural and artificial causes, it is becoming increasingly imperative to develop effective health monitoring strategies specifically tailored to railway bridges. This paper presents a new damage detection framework for element level damage identification, for railway truss bridges, that combines the analysis of acceleration and strain responses. For this research, operational acceleration and strain time-history responses are obtained in response to the passage of trains. The acceleration response is analyzed through a sensor-clustering-based time-series analysis method and damage features are investigated in terms of structural nodes from the truss bridge. The strain data is analyzed through principal component analysis and provides information on damage from instrumented truss elements. A new damage index is developed by formulating a strategy to combine the damage features obtained individually from both acceleration and strain analysis. The proposed method is validated through a numerical study by utilizing a finite element model of a railway truss bridge. It is shown that while both methods individually can provide information on damage location, and severity, the new framework helps to provide substantially improved damage localization and can overcome the limitations of individual analysis.


2014 ◽  
Vol 86 ◽  
pp. 503-510 ◽  
Author(s):  
Vimal Mohan ◽  
S. Parivallal ◽  
K. Kesavan ◽  
B. Arunsundaram ◽  
A. K. Farvaze Ahmed ◽  
...  

2013 ◽  
Vol 569-570 ◽  
pp. 223-229 ◽  
Author(s):  
Chun Feng Wan ◽  
Wan Hong ◽  
Zhi Shen Wu ◽  
Tadanobu Sato

Fiber optic sensors become very popular for structural testing and monitoring in civil engineering nowadays, due to its advantage of high resolution and environment durability. In this paper, long-gauge fiber optic bragg grating sensors will be introduced. Structural damage detection stratagem using the micro-strain mode will be studied. Then its application to a structural testing and monitoring for a real long span truss bridge will be discussed in detail. In the testing, 23 long-gauge fiber optic bragg grating sensors were deployed on the mid span of the bridge. Testing were made under conditions either there is train on the bridge or no train on it. Corresponding dynamic characteristics were analyzed and discussed. Results of the testing show that long-gauge fiber optic sensors can work well for structural testing and also damage detection for truss bridges.


Sign in / Sign up

Export Citation Format

Share Document