Physical and mechanical behavior of cement-stabilized compressed earth blocks reinforced by sisal fibers

Author(s):  
Yacine Labiad ◽  
Abdelaziz Meddah ◽  
Miloud Beddar
2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


Author(s):  
William D. Lawson ◽  
Chaitanya Kancharla ◽  
Priyantha W. Jayawickrama

2021 ◽  
Author(s):  
Mohamed Lahdili ◽  
Fatima-Ezzahra El Abbassi ◽  
Siham Sakami ◽  
Ahmed Aamouche

1997 ◽  
Vol 30 (9) ◽  
pp. 545-551 ◽  
Author(s):  
Peter Walker ◽  
Trevor Stace

2020 ◽  
Vol 10 (2) ◽  
pp. 70-81
Author(s):  
Santiago Pedro Cabrera ◽  
Yolanda Guadalupe Aranda-Jiménez ◽  
Edgardo Jonathan Suárez-Domínguez ◽  
Rodolfo Rotondaro

This work presents the evaluation of the environmental impact and compressive strength of Compressed Earth Blocks (CEB) stabilized with hydrated aerial lime and Portland cement. For this, 12 series of blocks stabilized with different proportions of lime and cement were manufactured and the Life Cycle Analysis (LCA) methodology was used. After conducting these assays and simulations, it could be concluded that, using earth and sand typical of the city of Santa Fe (Argentina), stabilized with certain percentages of Portland cement between 5 and 10% in weight, CEB can be produced with sufficient levels of strength for them to be used in load-bearing walls, in this way minimizing the negative environmental impact associated with their manufacturing. It is also concluded that the stabilization with aerial lime does not increase the CEB’s compressive strength and, on the contrary, significantly increases their negative impact on the environment.


Sign in / Sign up

Export Citation Format

Share Document