The influence of the addition of ground olive stone on the thermo-mechanical behavior of compressed earth blocks

2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.

2020 ◽  
Vol 10 (2) ◽  
pp. 70-81
Author(s):  
Santiago Pedro Cabrera ◽  
Yolanda Guadalupe Aranda-Jiménez ◽  
Edgardo Jonathan Suárez-Domínguez ◽  
Rodolfo Rotondaro

This work presents the evaluation of the environmental impact and compressive strength of Compressed Earth Blocks (CEB) stabilized with hydrated aerial lime and Portland cement. For this, 12 series of blocks stabilized with different proportions of lime and cement were manufactured and the Life Cycle Analysis (LCA) methodology was used. After conducting these assays and simulations, it could be concluded that, using earth and sand typical of the city of Santa Fe (Argentina), stabilized with certain percentages of Portland cement between 5 and 10% in weight, CEB can be produced with sufficient levels of strength for them to be used in load-bearing walls, in this way minimizing the negative environmental impact associated with their manufacturing. It is also concluded that the stabilization with aerial lime does not increase the CEB’s compressive strength and, on the contrary, significantly increases their negative impact on the environment.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2978 ◽  
Author(s):  
Elisabete R. Teixeira ◽  
Gilberto Machado ◽  
Adilson de P. Junior ◽  
Christiane Guarnier ◽  
Jorge Fernandes ◽  
...  

The present research is focused on an experimental investigation to evaluate the mechanical, durability, and thermal performance of compressed earth blocks (CEBs) produced in Portugal. CEBs were analysed in terms of electrical resistivity, ultrasonic pulse velocity, compressive strength, total water absorption, water absorption by capillarity, accelerated erosion test, and thermal transmittance evaluated in a guarded hotbox setup apparatus. Overall, the results showed that compressed earth blocks presented good mechanical and durability properties. Still, they had some issues in terms of porosity due to the particle size distribution of soil used for their production. The compressive strength value obtained was 9 MPa, which is considerably higher than the minimum requirements for compressed earth blocks. Moreover, they presented a heat transfer coefficient of 2.66 W/(m2·K). This heat transfer coefficient means that this type of masonry unit cannot be used in the building envelope without an additional thermal insulation layer but shows that they are suitable to be used in partition walls. Although CEBs have promising characteristics when compared to conventional bricks, results also showed that their proprieties could even be improved if optimisation of the soil mixture is implemented.


2013 ◽  
Vol 327 ◽  
pp. 40-43
Author(s):  
Xiao Long Li ◽  
Guo Zhong Li

The ordinary portland cement was used to prepare foamed cement insulation materials by physical foaming method. The influence of different process of fiber added to the foamed cement insulation materials on its performance was studied and the optimum mix ratio of raw materials was determined. The results showed that the glass fire could be evenly dispersed in the slurry by dry adding technology and got better enhanced effect. When the dosage of glass fire was 0.9%, the performance of the foamed cement material as follows: dry density of 318 kg/m3, 3d flexural strength of 0.61MPa, 3d compressive strength of 1.05MPa, thermal conductivity of 0.065W/(m·k). The reinforce mechanism of glass fire was explored.


2018 ◽  
Vol 162 ◽  
pp. 02024
Author(s):  
Waleed Abbas ◽  
Wasan Khalil ◽  
Ibtesam Nasser

Due to the rapid depletion of natural resources, the use of waste materials and by-products from different industries of building construction has been gaining increased attention. Geopolymer concrete based on Pozzolana is a new material that does not need the presence of Portland cement as a binder. The main focus of this research is to produce lightweight geopolymer concrete (LWGPC) using artificial coarse lightweight aggregate which produced from locally available bentonite clays. In this investigation, the binder is low calcium fly ash (FA) and the alkali activator is sodium hydroxide and sodium silicate in different molarities. The experimental tests including workability, fresh density, also, the compressive strength, splitting tensile strength, flexural strength, water absorption and ultrasonic pulse velocity at the age of 7, 28 and 56 days were studied. The oven dry density and thermal conductivity at 28 days age are investigated. The results show that it is possible to produce high strength lightweight geopolymer concrete successfully used as insulated structural lightweight concrete. The 28-day compressive strength, tensile strength, flexural strength, dry density, and thermal conductivity of the produced LWGPC are 35.8 MPa, 2.6MPa, 5.5 MPa, 1835kg/m3, and 0.9567 W/ (m. K), respectively.


2014 ◽  
Vol 538 ◽  
pp. 3-6
Author(s):  
Yu Peng Chen ◽  
Wen Hong Tao ◽  
Xing Hua Fu ◽  
Li Yuan Dong ◽  
Hai Tao Yu

Orthogonal testing method was used to study the effects of polystyrene particles, hydrophobic agent, air-entraining agent, polypropylene monofilament fiber on dry density, compressive strength, water absorption and softening coefficient of composite insulation mortar. The optimal ratio was obtained as: 3% of the weight are polystyrene particles, 0.2% is hydrophobic agent, air-entraining agent counts for 0.4wt%,and polypropylene monofilament fiber 0.6%. The main performances of the mortar were recorded as: dry density was 228Kg/m3, 28 day compressive strength after conserved for 28 days was 0.54MPa, and thermal conductivity 0.0596W/(m•K). Microstructure of the composite insulation mortar was analyzed by SEM (scanning electron microscopy) and its function mechanism was studied preliminarily.


2021 ◽  
Author(s):  
Chaoming PANG ◽  
Xinxin MENG ◽  
Chunpeng ZHANG ◽  
Jinlong PAN

Abstract Shrinkage of foam concrete can easily cause cracking and thus makes it difficult for a manufacturer to maintain quality. The density of lightweight aggregate concrete is too high to meet specifications for lightweight and thermal insulation for wallboard. Two types of concrete with dry density in the range 1000–1200 kg/m3 for use in wallboard were designed and prepared using foam and lightweight aggregate. The properties of porous lightweight aggregate concrete with core-shell non-sintered lightweight aggregate were compared with sintered lightweight aggregate concrete along with several dimensions. The two aggregates were similar in particle size, density, and strength. The effects of each aggregate on the workability, compressive strength, dry shrinkage, and thermal conductivity of the lightweight concrete were analyzed and compared. Pore structures were determined by mercury intrusion porosimetry and X-ray computed tomography. Compressive strength ranged from 7.8 to 11.8 MPa, and thermal conductivity coefficients ranged from 0.193 to 0.219 W/m/K for both types of concrete. The results showed that the core-shell non-sintered lightweight aggregate bonded better with the paste matrix at the interface transition zone and had a better pore structure than the sintered lightweight aggregate concrete. Slump flow of the core-shell non-sintered lightweight aggregate concrete was about 20% greater than that of the sintered lightweight aggregate concrete, 28d compressive strength was about 10% greater, drying shrinkage was about 10% less, and thermal conductivity was less. Porous lightweight aggregate concrete using core-shell non-sintered lightweight aggregate performs well when used in wallboard because of its low density, high thermal insulation, and improved strength.


2019 ◽  
Vol 22 (3-4) ◽  
pp. 139-148
Author(s):  
Lavie A. MANGO-ITULAMYA ◽  
Frédéric COLLIN ◽  
Pascal PILATE ◽  
Fabienne COURTEJOIE ◽  
Nathalie FAGEL

This study aims to characterize Belgian clays in order to evaluate their use for manufacture of compressed earth blocks (CEB). Nineteen Belgian clay deposits were sampled in 56 sites and 135 samples were collected and analyzed. The analyses focus on the determination of particle size, plasticity, nature and mineralogy as the main characteristics for assessing the suitability of the raw clays to make CEB. These analyses allow for classifying the sampled clay deposits in three categories: clays that can be used unchanged to make CEB (2 clay deposits), clays that are suitable for the manufacture of CEB but require addition of sand and gravel particles (13 clay deposits) and clays that are suitable for the manufacture of CEB if they are mixed with other raw clays (4 clay deposits). In order to verify the use of these clays, five of them served as a model for making CEB. The strength of these bricks was evaluated by testing for compressive strength and abrasion resistance. The results of these tests confirm the suitability or not of the sampled clays for the manufacture of CEB.


2021 ◽  
Vol 39 (4A) ◽  
pp. 668-674
Author(s):  
Wasan I. Khalіl ◽  
Qaіs J. Frayyeh ◽  
Haider Abed

In this research, a study is made on the Pervious Geopolymer Concrete (PGC), which is based on localmaterial(Metakaolin). The inclusion of Ordinary Portland Cement (OPC) as a partial substitute for Metakaolin (MK) for the production of (PGCs) has also been investigated. Pervious Geopolymer concrete was outputted from the local Metakaolin (MK), and ordinary Portland cement (OPC) as a partial substitute by weight of MK and silicate of sodium (Na2SiO3) and hydroxide of sodium (NaOH) solution. All PGC samples were cured after 24 hours from casting for five hours at a degree of the temperature of 50 ° C, then the testingafter 28 days. The compressive-strength, total content of voids, the strength of bending, dry-density, and thermal-conductivity of pervious Geopolymer concrete were examined. The mechanicalresults of testing ranged from (11.03 and 2.25) to (14.3 and 2.75) MPa for compressive-strength and flexural strength respectively.


2020 ◽  
Vol 838 ◽  
pp. 81-87
Author(s):  
Petr Konrád ◽  
Peter Gallo ◽  
Radoslav Sovják ◽  
Šárka Pešková ◽  
Jan Valentin

In the framework of this study, compressed earth blocks (CEB) were produced using waste materials and various parameters. Material parameters included waste soil, recycled concrete, fly ash, cement, admixtures and water contents. Manufacturing parameters were vibration during manufacturing, confinement pressure, curing environment and curing time. Specimens used in this study were cubes and compressive strength testing was used to evaluate different mixtures and manufacturing methods. In terms of compressive strength, compressed earth blocks made of these materials could be used for manufacturing bricks and other structural elements.


Sign in / Sign up

Export Citation Format

Share Document