scholarly journals Bloques de Tierra Comprimida (BTC) estabilizados con cal y cemento. Evaluación de su impacto ambiental y su resistencia a compresión

2020 ◽  
Vol 10 (2) ◽  
pp. 70-81
Author(s):  
Santiago Pedro Cabrera ◽  
Yolanda Guadalupe Aranda-Jiménez ◽  
Edgardo Jonathan Suárez-Domínguez ◽  
Rodolfo Rotondaro

This work presents the evaluation of the environmental impact and compressive strength of Compressed Earth Blocks (CEB) stabilized with hydrated aerial lime and Portland cement. For this, 12 series of blocks stabilized with different proportions of lime and cement were manufactured and the Life Cycle Analysis (LCA) methodology was used. After conducting these assays and simulations, it could be concluded that, using earth and sand typical of the city of Santa Fe (Argentina), stabilized with certain percentages of Portland cement between 5 and 10% in weight, CEB can be produced with sufficient levels of strength for them to be used in load-bearing walls, in this way minimizing the negative environmental impact associated with their manufacturing. It is also concluded that the stabilization with aerial lime does not increase the CEB’s compressive strength and, on the contrary, significantly increases their negative impact on the environment.

2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


Author(s):  
Konstantinos G. Papaspyropoulos ◽  
Athanassios S. Christodoulou ◽  
Vaios Blioumis ◽  
Kyriakos E. Skordas ◽  
Periklis K. Birtsas

The purpose of the present chapter is to demonstrate how an econometric application supported by the use of simple software can augment an environmental nonprofit organization’s (ENPO) environmental performance. An ENPO, whose scope of operation is the protection of natural resources, usually deals with the problem of how to reduce its negative environmental impact without sacrificing the positive one resulting from its work. This chapter argues that the application of cointegration analysis on available time series environmental data can offer an indication for the policy decision-making in terms of such a contrast in impacts. If the time series are not cointegrated, then the ENPO can reduce its negative environmental impact without affecting the positive one. If they are cointegrated, then alternative policies have to be designated for dealing with the negative impact.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2978 ◽  
Author(s):  
Elisabete R. Teixeira ◽  
Gilberto Machado ◽  
Adilson de P. Junior ◽  
Christiane Guarnier ◽  
Jorge Fernandes ◽  
...  

The present research is focused on an experimental investigation to evaluate the mechanical, durability, and thermal performance of compressed earth blocks (CEBs) produced in Portugal. CEBs were analysed in terms of electrical resistivity, ultrasonic pulse velocity, compressive strength, total water absorption, water absorption by capillarity, accelerated erosion test, and thermal transmittance evaluated in a guarded hotbox setup apparatus. Overall, the results showed that compressed earth blocks presented good mechanical and durability properties. Still, they had some issues in terms of porosity due to the particle size distribution of soil used for their production. The compressive strength value obtained was 9 MPa, which is considerably higher than the minimum requirements for compressed earth blocks. Moreover, they presented a heat transfer coefficient of 2.66 W/(m2·K). This heat transfer coefficient means that this type of masonry unit cannot be used in the building envelope without an additional thermal insulation layer but shows that they are suitable to be used in partition walls. Although CEBs have promising characteristics when compared to conventional bricks, results also showed that their proprieties could even be improved if optimisation of the soil mixture is implemented.


2019 ◽  
Vol 22 (3-4) ◽  
pp. 139-148
Author(s):  
Lavie A. MANGO-ITULAMYA ◽  
Frédéric COLLIN ◽  
Pascal PILATE ◽  
Fabienne COURTEJOIE ◽  
Nathalie FAGEL

This study aims to characterize Belgian clays in order to evaluate their use for manufacture of compressed earth blocks (CEB). Nineteen Belgian clay deposits were sampled in 56 sites and 135 samples were collected and analyzed. The analyses focus on the determination of particle size, plasticity, nature and mineralogy as the main characteristics for assessing the suitability of the raw clays to make CEB. These analyses allow for classifying the sampled clay deposits in three categories: clays that can be used unchanged to make CEB (2 clay deposits), clays that are suitable for the manufacture of CEB but require addition of sand and gravel particles (13 clay deposits) and clays that are suitable for the manufacture of CEB if they are mixed with other raw clays (4 clay deposits). In order to verify the use of these clays, five of them served as a model for making CEB. The strength of these bricks was evaluated by testing for compressive strength and abrasion resistance. The results of these tests confirm the suitability or not of the sampled clays for the manufacture of CEB.


2020 ◽  
Vol 838 ◽  
pp. 81-87
Author(s):  
Petr Konrád ◽  
Peter Gallo ◽  
Radoslav Sovják ◽  
Šárka Pešková ◽  
Jan Valentin

In the framework of this study, compressed earth blocks (CEB) were produced using waste materials and various parameters. Material parameters included waste soil, recycled concrete, fly ash, cement, admixtures and water contents. Manufacturing parameters were vibration during manufacturing, confinement pressure, curing environment and curing time. Specimens used in this study were cubes and compressive strength testing was used to evaluate different mixtures and manufacturing methods. In terms of compressive strength, compressed earth blocks made of these materials could be used for manufacturing bricks and other structural elements.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6351
Author(s):  
Maria Kaszyńska ◽  
Szymon Skibicki ◽  
Marcin Hoffmann

Despite the rapid development of 3D printing technology for cement composites, there are still a number of unsolved issues related to extrusion printing. One of them is proper mix design that allows for meeting criteria related to the printing of cementitious materials, such as pumpability, buildability, consistency on the materials, flowability and workability, simultaneously incorporating sustainable development ideas. In the case of mixes for 3D printing, the modification of the composition which increases the overall performance does not always go hand in hand with the reduction of negative environmental impact. The article presents the results of tests of eight mixtures modified with reactive and inert mineral additives designed for 3D printing. The mixes were evaluated in terms of their rheological and mechanical properties as well as environmental impact. Initial test results were verified by printing hollow columns up until collapse. Later, the differences between the compressive strength of standard samples and printed columns were determined. In order to summarize the results, a multi-faceted analysis of the properties of the mixes was carried out, introducing assessment indicators for its individual parameters. The article proves that appropriate material modification of mixes for 3D printing can significantly reduce the negative impact on the environment without hindering required 3D printing properties.


MRS Advances ◽  
2018 ◽  
Vol 3 (34-35) ◽  
pp. 2009-2014 ◽  
Author(s):  
Philbert Nshimiyimana ◽  
David Miraucourt ◽  
Adamah Messan ◽  
Luc Courard

ABSTRACTEarth stabilization, using two by-products available in Burkina Faso: Calcium Carbide Residue (CCR) and Rice Husk Ash (RHA), improved the performance of compressed earth blocks (CEBs). The effect of adding CCR or CCR: RHA (in various ratios) to the clayey earth was investigated. CEBs were molded by manually compressing moisturized mixtures of earthen materials and 0-15 % CCR or CCR: RHA (various ratios) with respect to the weight of earthen material. The results showed that, with 15 % CCR: RHA in 7: 3 ratio, the compressive strength of CEBs (6.6 MPa) is three times that of the CEBs containing 15 % CCR alone (2.2 MPa). This improvement was related to the pozzolanic reaction between CCR, clay and RHA. These CEBs comply with the requirement for wall construction of two-storey housing.


2021 ◽  
Vol 244 ◽  
pp. 10032
Author(s):  
Galina Semenova

Negative Environmental Impact (NEI) is one of the measures of state control over the level of environmental pollution. The established fee must be paid by all organizations, enterprises and institutions whose activities are associated with a negative impact on nature. Assessing the potential of the tax system that exists today, we have to state that the maximum possible level of the share of revenues from the exploitation of natural resources provided by the tax system as a whole (including direct and indirect taxes) cannot exceed 20%. As for direct taxes on the exploitation of natural resources, they are calculated only by a few percent. The need for reforms in the Russian tax system is obvious. The subject of the study is the types of negative environmental impact. The purpose of the study is to identify ways to improve environmental taxation. Methodology. To study the topic, the rates for emissions of pollutants into the air and into water bodies, and for the disposal of production and consumption wastes according to their hazard class were considered. Results - greening of tax policy is needed, and some of its areas that will completely change the system of waste collection and disposal in Russia are highlighted.


Sign in / Sign up

Export Citation Format

Share Document