hydraulic press
Recently Published Documents


TOTAL DOCUMENTS

680
(FIVE YEARS 200)

H-INDEX

17
(FIVE YEARS 4)

2022 ◽  
Vol 1048 ◽  
pp. 437-444
Author(s):  
Dinh Nhat Do ◽  
Hoang Danh Pham ◽  
Xuan Tien Le ◽  
Minh Tuan Le ◽  
Ngoc Phuong Nguyen ◽  
...  

Neem (Azadirachta indica A. Juss.) oil has been widely used in pharmaceuticals and cosmetics. The oil was extracted by the hydraulic press at the pilot scale. The effect of various critical factors such as the morphology of material, moisture of the neem seed, applied pressure, a number of presses turn, pressing time on the oil yield was considered. It was found that the oil yield increased with increasing applied pressure and pressing time. The moisture content of the neem seed kernel has a great influence on the oil yield, the higher the moisture content, the harder it is to recover the oil. The highest oil yield of 378mL/kg dry seed kernel was obtained at 190 MPa, 4% moisture content for 10 minutes of pressing per turn, and 3 turns of pressing. The main ingredients in neem kernel oil were oleic acid (45.9%), stearic acid (18%), palmitic acid (16.9%), and linoleic acid (15.65%). The results obtained can be used in the production of Neem oil at an industrial scale.


2021 ◽  
Vol 15 (58) ◽  
pp. 100-121
Author(s):  
Marlize Reffatti Zinelli Viezzer ◽  
Odorico Konrad ◽  
Bruno Furquim Horodenski ◽  
Aparecida Garcia Pacheco Gabriel ◽  
Rodrigo Spinelli

Resumo: A discussão sobre edificações sustentáveis vem sendo abordada há décadas por diferentes autores, em geral com foco no consumo energético e na vida útil dos materiais, contudo para atender esses objetivos são necessárias novas tecnologias que promovam mais sustentabilidade. Para tanto, a inclusão de fibras vegetais em compostos de solo-cimento se mostram uma alternativa interessante, e pelo fato do setor industrial madeireiro movimentar a economia local no município de Alta Floresta o resíduo serragem passa a ser um possível agregado nos tijolos ecológicos, uma vez que o armazenamento inadequado deste resíduo pode causar sérios impactos ambientais, portanto, este estudo se propôs a desenvolver um tijolo ecológico fabricado a partir da mistura de solo-cimento e serragem de três espécies florestais da Amazônia, Cambará - Vochysia sp., Cedrinho - Erisma uncinatum Warm., Garapeira. - Apuleia sp, e ainda avaliar a resistência a compressão com intervalos de cura de 7, 14, 21 e 28 dias, com o intuito de verificar a viabilidade do material construtivo. Para a realização do experimento, os tijolos foram fabricados com traço de 1:8:2,5, (cimento: solo: serragem) e a serragem utilizada com dois tratamentos, in natura e tratada por imersão e padronização granulométrica. O material misturado foi compactado em uma prensa hidráulica. Como resultado, os tijolos com serragem apresentaram valores de resistência mecânica de: Cedrinho 1,26Mpa, Cambará 1,70Mpa e Garapeira 1,95Mpa e teores de absorção de umidade  de 15,7%, 17,6% e 13,8%, respectivamente.Palavras-chave: Sustentabilidade. Tijolo solo-cimento. Serragem. Abstract: The discussion about sustainable edifications has been addressed in decades by different authors, generally focusing energetic consume and the materials lifespan, however to reach these goals it is necessary new technologies that promote more sustainability. For that the inclusion of vegetal fibers in soil-cements composts present as an interesting alternative, and because the timber industry moves the local economy in the city of Alta Floresta the sawdust residue become a possible aggregate of ecologic bricks since inadequate storage of this material can cause serious environment impacts, therefore this study propose to develop an ecologic brick manufactured by the mix of soil-cement and sawdust of three Amazonian species: Cambará - Vochysia sp., Cedrinho - Erisma uncinatum Warm, Garapeira. - Apuleia sp., and also evaluate the compression resistance in 7, 14, 21, 28 days intervals, aiming to verify the feasibility of the constructive material. To carry out the experiment the bricks were manufacture with the ratio of 1:8:2,5 (cement: soil: sawdust), and the sawdust used was treated twice, in natura, treated by immersion and granulometric standardization. The mixed material was compacted in a hydraulic press. As a result, the sawdust bricks showed resistance values of: Cedrinho 1.26 MPa, Cambará 1.70 MPa and Garapeira 1.95 MPa and humidity absorption percentage of 15.7%, 17.6%, and 13.8% % respectively.Keywords: Sustainably, Ecologic Brick, Sawdust


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 100
Author(s):  
Szymon Skibicki ◽  
Patrycja Jakubowska ◽  
Maria Kaszyńska ◽  
Daniel Sibera ◽  
Krzysztof Cendrowski ◽  
...  

This study determines the effect of spent garnet as a replacement for natural sand in 3D-printed mortar at early ages. Five mixes with different spent garnet amounts were prepared (0%, 25%, 50%, 75% and 100% by volume). The ratio of binder to aggregate remained unchanged. In all mixes the water/binder ratio was assumed as a constant value of 0.375. Tests were performed to confirm the printability of the mix (a path quality test using a gantry robot with an extruder). Determinations of key buildability properties of the mix (green strength and Young’s Modulus) during uniaxial compressive strength at 15 min, 30 min and 45 min after adding water were conducted. A hydraulic press and the GOM ARAMIS precision image analysis system were used to conduct the study. The results showed that an increase in spent garnet content caused a decrease in green strength and Young’s Modulus (up to 69.91% and 80.37%, respectively). It was found that to maintain proper buildability, the recommended maximum replacement rate of natural sand with garnet is 50%. This research contributes new knowledge in terms of using recycled waste in the 3D printing technology of cementitious materials.


Nativa ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 558-562
Author(s):  
Edgley Alves de Oliveira Paula ◽  
Rafael Bezerra Azevedo Mendes ◽  
Claudia Yanara Meira da Costa ◽  
Rafael Rodolfo de Melo ◽  
Alexandre Santos Pimenta ◽  
...  

The growing demand for renewable products has led to many studies of alternative materials. The present work describes the production of a composite based in polyester resin reinforced with fibers from the climber plant Luffa cylindrica and evaluates its mechanical performance. The composite was produced with two perpendicularly-crossed layers of vegetable fibers. The lamination was performed in a mold with two glass plates pressed by a hydraulic press. To characterize the properties of the produced composite, density, tensile and bending strength tests were performed. The final composite had a mean density of 1.16 g cm-3, making it light due to the reinforcement with vegetable fibers. Tensile and bending strengths were 13.91 and 26.70 MPa, respectively. The experimental results showed that the composite with vegetable fibers as reinforcement had lower density than the pure polyester matrix and composites produced with glass fibers. The tensile strength was higher than the polyester matrix itself, although it was still low. Also, when submitted to bending stress, the composite presented lower resistance than the matrix. Overall, the composite can be a viable alternative for non-structural applications where light materials are required such as handicrafts and office partition. Keywords: sustainable material; vegetable fibers; mechanical properties; technical feasibility.   Caracterização mecânica de um compósito com matriz de poliéster reforçado com fibras naturais de bucha vegetal (Luffa cylindrica Hoen)   RESUMO: A crescente demanda por produtos renováveis tem levado a muitos estudos de materiais compósitos reforçado com fibras vegetais. A planta trepadeira Luffa cylindrica, conhecida popularmente como bucha vegetal, também apresenta potencial para este uso. O presente trabalho avalia o desempenho de um compósito à base de resina de Poliéster reforçado com bucha vegetal. O compósito foi produzido com duas camadas de fibras vegetais dispostas perpendicularmente entre si. A laminação foi realizada em um molde com duas placas de vidro prensadas por uma prensa hidráulica. Como propriedade física foi determinada a densidade e para as propriedades mecânicas, foram realizados ensaios de resistência à tração e flexão. O compósito final apresentou densidade média de 1,16 g cm-3, tornando-o leve devido ao reforço com fibras vegetais. As resistências à tração e flexão foram de 13,91 e 26,70 MPa, respectivamente. Os resultados experimentais mostraram que o compósito com fibras vegetais como reforço apresentou densidade menor que a matriz de poliéster pura e compósitos produzidos com fibras de vidro. A resistência à tração foi maior do que a própria matriz de poliéster. Além disso, quando submetido a tensões de flexão, o compósito apresentou menor resistência do que a matriz. No geral, o composto pode ser uma alternativa viável para aplicações não estruturais onde materiais leves são necessários, como artesanatos e paredes divisórias. Keywords: material sustentável; fibras vegetais; propriedades mecânicas; viabilidade técnica.


Author(s):  
J.D. Soares ◽  
M.O. Paula ◽  
A.C.O. Carneiro ◽  
L.J. Costa ◽  
A.C. Oliveira ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1528
Author(s):  
Agnieszka Laskowska ◽  
Monika Marchwicka ◽  
Agata Trzaska ◽  
Piotr Boruszewski

The aim of the study was to determine the selected surface and physical properties of iroko (Milicia excelsa (Welw.) C.C. Berg) and tauari (Couratari spp.) wood after thermo-mechanical treatment (TMT) in relation to extractive content. During TMT, no chemicals are introduced into the wood, which distinguishes this method from a number of wood modification methods. The iroko and tauari wood were subjected to volumetric densification in a hydraulic press. The wood was densified in a radial direction at a temperature of 100 and 150 °C. The wood color parameters were measured using the mathematical CIE L*a*b* and L*C*h color space models. The roughness parameters of Ra and Rz parallel and perpendicular to the grain were investigated. The contact angle (CA) of the wood with distilled water was determined based on the sessile drop method. The equilibrium moisture content (EMC) and dimensional changes of the wood were determined for a climate with a temperature of 20 °C and a relative humidity (RH) of 9%, 34%, 55%, 75% and 98%. The tauari wood was less prone to color changes under the influence of TMT than the iroko wood. After densification, the iroko and tauari wood displayed a different character of roughness changes. The iroko wood featured the lowest level of roughness after TMT at 100 °C, and the tauari wood after TMT at 150 °C. The densified iroko and tauari wood were characterized by weaker dynamics in the changes in their respective contact angles than the non-densified wood. The higher the temperature of the TMT, the lower the EMC of the wood. Higher EMC values were observed for the tauari wood than for the iroko wood. This was due to the lower content of chloroform-ethanol extractives. Similar dependencies were obtained in the case of hot water extractives. The thermo-mechanically treated wood displayed a greater tendency towards dimensional changes in a climate with high relative air humidity, i.e., above 70%, compared to the non-modified wood.


2021 ◽  
Vol 19 (11) ◽  
pp. 108-115
Author(s):  
Nihad Ali Shafeek

This research contains preparing the superconducting compound Bi2-xAgxSr2Ca2Cu3O10+δ and studying its structural and electrical characteristics. The samples were prepared using the solid-state method in two stages, and different concentrations of x were (x= 0.2,0.4,0.6,0.8) replaced instead of bismuth Bi. Then, using a hydraulic press 9 ton/cm2 and sintering with a temperature of 850°C, the samples were pressed. Next, x-ray diffraction is used to study the structural properties. The study of these samples was presented in different proportions of x values, where x = 0.4 is the best compensation ratio of x. A critical temperature of 1400C and the Tetragonal structure was got. After that, the effect of laser nidinium _ yak (Nd: YAG laser) was used on the compositional. It was found that the temperature value increased, so we got the best critical temperature, which is 142 0C.


Author(s):  
Yusup Hendronursito ◽  
Muhammad Amin ◽  
Muhammad Al Muttaqii ◽  
Pulung Karo Karo ◽  
Andini Yulia ◽  
...  

This study aims to determine the iron ore slag effect as an additive in particleboard based on the SNI 7705:2011 standard. Iron ore slag comes from the waste processing of iron ore into sponge iron. The iron ore slag is reduced to a size of 200 mesh. Particleboard made with the composition of slag and silica is 0:40, 8:32, 16:24, 20:20, 24:16, 32:8, and 40:0 wt%. Meanwhile, other materials were made permanent, namely PCC cement and lime 16 wt%, coconut fiber 3wt%, and water 3 wt%. They are pressed with 3 tons of pressure for 1 hour using a hydraulic press. Drying at room temperature for one day, under the hot sun for two days, then in an oven at 110 oC for 8 hrs. Analysis of the chemical composition of X-ray fluorescence and X-ray diffraction crystalline phase, SEM-EDS micro-photographs, physical tests including density and porosity, and mechanical compressive strength tests. The dominant composition of SiO2 and CaO affects the formation of silicon dioxide (SiO2), calcium silicate (CaSiO3), and dicalcium silicate (Ca2SiO4) phases. Silica has a positive effect on the compressive strength of particleboard but is different from Ca, which has an impact on reducing the compressive strength. The sem morphology shows that coconut fiber cannot withstand heating at 190 oC and results in agglomeration. The addition of 20% ore slag and silica has met the calcium silicate board SNI 7705-2011. These results can be used to develop slag waste from iron ore processing into much more useful objects.


2021 ◽  
Vol 8 (1) ◽  
pp. 2
Author(s):  
Laura Mereles ◽  
Eva Coronel ◽  
Loida Galeano ◽  
Silvia Caballero

Sicana odorifera seeds, from an ancestral Cucurbita growing in Paraguay, possess important biowaste after fruit pulp use. However, there are reports that its infusions can reduce and cure the symptoms of viral diseases such as hepatitis, denoting its medicinal properties. The recovery of nutrients and bioactive molecules from its bio-residues has potential uses in the industrial sector with high added value as functional food ingredients. In S. odorifera species, although it is not a fruit for mass consumption, it is precisely the lack of a market for its biowaste that has limited its integral use. Based on this, the centesimal composition, oil characterization, and fatty acids profile of the kurugua seeds from two accessions (atropurpurea (black) and reddish) were studied. Kurugua seeds have been subjected to a cold extraction with a hydraulic press from dried whole seeds, and ISO and AOCS standard methods were used for analytical determinations. The major components in the centesimal composition of kurugua seeds were lipids, dietary fiber, and proteins. The oils presented iodine, saponification, and refractive indices characteristic of preferentially polyunsaturated oils. The major component in the fatty acid profile was linolenic acid, an important essential fatty acid in the diet. Although the characteristics of kurugua oil, demonstrate its potential application in the food industry as a polyunsaturated oil, source of essential fatty acids, future studies on stability and sensory analysis for food applications are suggested, with great possibilities for the food safety framework.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012092
Author(s):  
Suffi Irni Alias ◽  
Banjuraizah Johar ◽  
Syed Nuzul Fadzli Adam ◽  
Mustaffa Ali Azhar Taib ◽  
Fatin Fatini Othman ◽  
...  

Abstract The porcelain formulation containing percentages of treated FGD sludge waste from 5% up to 15% in replacement of feldspar were prepared. The porcelain mixture formulation were mixed by high energy planatery mill at speed 300 rpm for 1 hours. The powder were compacted by using hydraulic press and sintered at temperature 1200 °C for 3 hours. The sintered samples were characterized using X-ray fluorescene (XRF), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) and Thermogravimetry/Differential scanning calorimetry (TGA/DCS). The primary effect concerning the addition of treated FGD sludge was the change of intensity composition (gypsum and anhydrate) in porcelain formulation. The XRD analysis has shown that the main component in sludge waste were gypsum and anhydrate.


Sign in / Sign up

Export Citation Format

Share Document