scholarly journals Effect of static local distortions vs. dynamic motions on the stability and band gaps of cubic oxide and halide perovskites

2021 ◽  
Author(s):  
Xin-Gang Zhao ◽  
Zhi Wang ◽  
Oleksandr I. Malyi ◽  
Alex Zunger
2019 ◽  
Vol 3 (12) ◽  
Author(s):  
Thomas Bischoff ◽  
Julia Wiktor ◽  
Wei Chen ◽  
Alfredo Pasquarello

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1282
Author(s):  
Ioannis Deretzis ◽  
Corrado Bongiorno ◽  
Giovanni Mannino ◽  
Emanuele Smecca ◽  
Salvatore Sanzaro ◽  
...  

The realization of stable inorganic perovskites is crucial to enable low-cost solution-processed photovoltaics. However, the main candidate material, CsPbI3, suffers from a spontaneous phase transition at room temperature towards a photo-inactive orthorhombic δ-phase (yellow phase). Here we used theoretical and experimental methods to study the structural and electronic features that determine the stability of the CsPbI3 perovskite. We argued that the two physical characteristics that favor the black perovskite phase at low temperatures are the strong spatial confinement in nanocrystalline structures and the level of electron doping in the material. Within this context, we discussed practical procedures for the realization of long-lasting inorganic lead halide perovskites.


Author(s):  
Bing Zhang ◽  
Xiaogang Wang ◽  
Yang Yang ◽  
Lei Tong ◽  
Bin Hu ◽  
...  

The instability of organometallic halide perovskites is deemed a key hindrance hampering their commercial utilization in solar cell research. In the current work, we investigate and compare the dynamics properties...


Author(s):  
Noor Titan Putri Hartono ◽  
Marie-Hélène Tremblay ◽  
Sarah Wieghold ◽  
Benjia Dou ◽  
Janak Thapa ◽  
...  

Incorporating a low dimensional (LD) perovskite capping layer on top of perovskite absorber, improves the stability of perovskite solar cells (PSCs). However, in the case of mixed-halide perovskites, which can...


2021 ◽  
Author(s):  
Sangyeon Cho ◽  
Seok-Hyun Yun

<p>Lead halide perovskites (LHP) microcrystals are promising materials for various optoelectronic applications. Surface coating on particles is a common strategy to improve their functionality and environmental stability, but LHP is not amenable to most coating chemistries because of its intrinsic weakness against polar solvents. Here, we describe a novel method of synthesizing LHP microcrystals in a super-saturated polar solvent using sonochemistry and applying various functional coatings on individual microcrystals <i>in situ</i>. We synthesize cesium lead bromine perovskite (CsPbBr<sub>3</sub>) microparticles capped with organic poly-norepinephrine (pNE) layers. The catechol group of pNE coordinates to bromine-deficient lead atoms, forming a defect-passivating and diffusion-blocking shell. The pNE layer enhances the stability of CsPbBr<sub>3</sub> in water by 2,000-folds, enabling bright luminescence and lasing from single microcrystals in water. Furthermore, the pNE shell permits biofunctionalization with proteins, small molecules, and lipid bilayers. Luminescence from CsPbBr<sub>3</sub> microcrystals is sustained in water over 1 hour and observed in live cells. The functionalization method may enable new applications of LHP particles in water-rich environments.<b></b></p>


2020 ◽  
Author(s):  
Brenda Vargas ◽  
Diana T. Reyes-Castillo ◽  
Eduardo Coutino-Gonzalez ◽  
Citlali Sánchez-Aké ◽  
Carlos Ramos ◽  
...  

Halide perovskites offer great promise for optoelectronic applications, but stability issues continue to hinder its implementation and long-term stability. The stability of all-inorganic halide perovskites and the inherent quantum confinement of low dimensional perovskites can be harnessed to synthesize materials with high PL efficiency. An example of such materials is the recently reported new family of layered double perovskites, Cs4Mn1−xCdxBi2Cl12. Herein, we report a new synthetic procedure that enhances the maximum PLQY of this family materials to up 79.5%, a 20% enhancement from previous reports and the highest reported for a Mn-doped halide perovskite. Importantly, stability tests demonstrate that these materials are very stable towards humidity, UV irradiation, and temperature. Finally, we investigated the photophysics, the effects of magnetic coupling and temperature in the PL efficiency and proposed a mechanism for the emission process. Our results highlight the potential of this family of materials and related layered all-inorganic perovskites for solid-state lighting and optoelectronic applications<p></p>


Joule ◽  
2020 ◽  
Vol 4 (8) ◽  
pp. 1626-1627 ◽  
Author(s):  
Matthew L. Davies

2018 ◽  
Vol 6 (38) ◽  
pp. 10121-10137 ◽  
Author(s):  
Zhaohua Zhu ◽  
Qian Sun ◽  
Zhipeng Zhang ◽  
Jie Dai ◽  
Guichuan Xing ◽  
...  

We review the investigations and mechanistic studies on the stability of metal-halide perovskites under external perturbations, and highlight recent attempts to apply them as sensors.


Sign in / Sign up

Export Citation Format

Share Document