Mechanistic investigation of N-heterocyclic carbene and Na2CO3 cooperatively catalyzed C(sp3)-F bond activation reaction of fluoroenal

2020 ◽  
Vol 489 ◽  
pp. 110944 ◽  
Author(s):  
Yang Wang ◽  
Donghui Wei
2017 ◽  
Author(s):  
Haibo Ge ◽  
Lei Pan ◽  
Piaoping Tang ◽  
Ke Yang ◽  
Mian Wang ◽  
...  

Transition metal-catalyzed selective C–H bond functionalization enabled by transient ligands has become an extremely attractive topic due to its economical and greener characteristics. However, catalytic pathways of this reaction process on unactivated sp<sup>3</sup> carbons of reactants have not been well studied yet. Herein, detailed mechanistic investigation on Pd-catalyzed C(sp<sup>3</sup>)–H bond activation with amino acids as transient ligands has been systematically conducted. The theoretical calculations showed that higher angle distortion of C(sp2)-H bond over C(sp3)-H bond and stronger nucleophilicity of benzylic anion over its aromatic counterpart, leading to higher reactivity of corresponding C(sp<sup>3</sup>)–H bonds; the angle strain of the directing rings of key intermediates determines the site-selectivity of aliphatic ketone substrates; replacement of glycine with β-alanine as the transient ligand can decrease the angle tension of the directing rings. Synthetic experiments have confirmed that β-alanine is indeed a more efficient transient ligand for arylation of β-secondary carbons of linear aliphatic ketones than its glycine counterpart.<br><br>


Synlett ◽  
2021 ◽  
Author(s):  
Habibur Rahaman ◽  
Brindaban Roy ◽  
Somjit Hazra ◽  
Biplab Mondal

Abstract: A one pot direct synthesis of xanthine and uric acid derivates is reported. This simple yet efficient methodology illustrates concurrent formation of two C-N bonds using CuBr2 as catalyst and one of those C-N bonds is formed by uracil C6-H bond activation.


2015 ◽  
Vol 6 (5) ◽  
pp. 3201-3210 ◽  
Author(s):  
Alpay Dermenci ◽  
Rachel E. Whittaker ◽  
Yang Gao ◽  
Faben A. Cruz ◽  
Zhi-Xiang Yu ◽  
...  

We report a catalytic C–C bond activation of unstrained conjugated monoynonesviadecarbonylation to synthesize disubstituted alkynes.


2020 ◽  
Vol 59 (23) ◽  
pp. 17123-17133
Author(s):  
Alen Bjelopetrović ◽  
Dajana Barišić ◽  
Zrinka Duvnjak ◽  
Ivan Džajić ◽  
Marina Juribašić Kulcsár ◽  
...  

1999 ◽  
Vol 19 (1-4) ◽  
pp. 253-262 ◽  
Author(s):  
M. C. Asplund ◽  
H. Yang ◽  
K. T. Kotz ◽  
S. E. Bromberg ◽  
M. J. Wilkens ◽  
...  

The identification of the intermediates observed in bond activation reactions involving organometallic complexes on time scales from femtoseconds to milliseconds has been accomplished through the use of ultrafast infrared spectroscopy. C—H bond activation by the molecule Tp*Rh(CO)2 showed a final activation time of 200 ns in cyclic solvents, indicating a reaction barrier of 8.3 kcal/mol. An important intermediate is the partially dechelated η2-Tp*Rh(CO)(S) solvent complex, which was formed 200 ps after the initial photoexcitation. Si—H bond activation by CpM(CO)3 (M=Mn, Re) showed some product formation in less than 5 ps, indicating that the Si—H activation reaction is barrierless. The activated product was formed on several timescales, from picoseconds to nanoseconds, suggesting that there are different pathways for forming final product which are partitioned by the initial photoexcitation.


2010 ◽  
Vol 131 (11) ◽  
pp. 1122-1132 ◽  
Author(s):  
Bradley M. Kraft ◽  
Eric Clot ◽  
Odile Eisenstein ◽  
William W. Brennessel ◽  
William D. Jones

Sign in / Sign up

Export Citation Format

Share Document