scholarly journals Selecting batch size in discrete-time two-phase queuing system

2008 ◽  
Vol 47 (11-12) ◽  
pp. 1246-1253 ◽  
Author(s):  
Subrata Saha ◽  
Attahiru Sule Alfa
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1462
Author(s):  
Ming-Fa Tsai ◽  
Chung-Shi Tseng ◽  
Po-Jen Cheng

This paper presents the design and implementation of an application-specific integrated circuit (ASIC) for a discrete-time current control and space-vector pulse-width modulation (SVPWM) with asymmetric five-segment switching scheme for AC motor drives. As compared to a conventional three-phase symmetric seven-segment switching SVPWM scheme, the proposed method involves five-segment two-phase switching in each switching period, so the inverter switching times and power loss can be reduced by 33%. In addition, the produced PWM signal is asymmetric with respect to the center-symmetric triangular carrier wave, and the voltage command signal from the discrete-time current control output can be given in each half period of the PWM switching time interval, hence increasing the system bandwidth and allowing the motor drive system with better dynamic response. For the verification of the proposed SVPWM modulation scheme, the current control function in the stationary reference frame is also included in the design of the ASIC. The design is firstly verified by using PSIM simulation tool. Then, a DE0-nano field programmable gate array (FPGA) control board is employed to drive a 300W permanent-magnet synchronous motor (PMSM) for the experimental verification of the ASIC.


2020 ◽  
Vol 18 (4) ◽  
pp. 505-509
Author(s):  
Chiu Peter ◽  
Peng-Cheng Sung ◽  
Victoria Chiu

In a recent study, a manufacturing batch-size and end-product shipment problem with outsourcing, multi-shipment, and rework was investigated using mathematical modeling and derivatives in its solution procedure. This study demonstrates that a simplified two-phase algebraic approach can also solve the problem and decide the cost-minimization policies for batch-size and end-product shipments. Our proposed straightforward solution approach enables the practitioners in the production planning and controlling filed to comprehend and efficiently solve the best replenishing batch-size and shipment policies of this real problem.


Author(s):  
Umesh Chandra Gupta ◽  
Nitin Kumar ◽  
Sourav Pradhan ◽  
Farida Parvez Barbhuiya ◽  
Mohan L Chaudhry

Discrete-time queueing models find a large number of applications as they are used in modeling queueing systems arising in digital platforms like telecommunication systems and computer networks. In this paper, we analyze an infinite-buffer queueing model with discrete Markovian arrival process. The units on arrival are served in batches by a single server according to the general bulk-service rule, and the service time follows general distribution with service rate depending on the size of the batch being served. We mathematically formulate the model using the supplementary variable technique and obtain the vector generating function at the departure epoch. The generating function is in turn used to extract the joint distribution of queue and server content in terms of the roots of the characteristic equation. Further, we develop the relationship between the distribution at the departure epoch and the distribution at arbitrary, pre-arrival and outside observer's epochs, where the first is used to obtain the latter ones. We evaluate some essential performance measures of the system and also discuss the computing process extensively which is demonstrated by some numerical examples.


Sign in / Sign up

Export Citation Format

Share Document