chaotic circuit
Recently Published Documents


TOTAL DOCUMENTS

331
(FIVE YEARS 95)

H-INDEX

28
(FIVE YEARS 8)

2021 ◽  
Vol 26 (6) ◽  
pp. 1-24
Author(s):  
Saranyu Chattopadhyay ◽  
Pranesh Santikellur ◽  
Rajat Subhra Chakraborty ◽  
Jimson Mathew ◽  
Marco Ottavi

Physically Unclonable Function (PUF) circuits are promising low-overhead hardware security primitives, but are often gravely susceptible to machine learning–based modeling attacks. Recently, chaotic PUF circuits have been proposed that show greater robustness to modeling attacks. However, they often suffer from unacceptable overhead, and their analog components are susceptible to low reliability. In this article, we propose the concept of a conditionally chaotic PUF that enhances the reliability of the analog components of a chaotic PUF circuit to a level at par with their digital counterparts. A conditionally chaotic PUF has two modes of operation: bistable and chaotic , and switching between these two modes is conveniently achieved by setting a mode-control bit (at a secret position) in an applied input challenge. We exemplify our PUF design framework for two different PUF variants—the CMOS Arbiter PUF and a previously proposed hybrid CMOS-memristor PUF, combined with a hardware realization of the Lorenz system as the chaotic component. Through detailed circuit simulation and modeling attack experiments, we demonstrate that the proposed PUF circuits are highly robust to modeling and cryptanalytic attacks, without degrading the reliability of the original PUF that was combined with the chaotic circuit, and incurs acceptable hardware footprint.


2021 ◽  
Vol 152 ◽  
pp. 111363
Author(s):  
Xujiong Ma ◽  
Jun Mou ◽  
Li Xiong ◽  
Santo Banerjee ◽  
Yinghong Cao ◽  
...  

2021 ◽  
Vol 136 (11) ◽  
Author(s):  
Xingce Liu ◽  
Jun Mou ◽  
Jieyang Wang ◽  
Jian Liu ◽  
Yinghong Cao
Keyword(s):  

Author(s):  
Ndolane Sene

This paper introduces the properties of a fractional-order chaotic system described by the Caputo derivative. The impact of the fractional-order derivative has been focused on. The phase portraits in different orders are obtained with the aids of the proposed numerical discretization, including the discretization of the Riemann-Liouville fractional integral. The stability analysis has been used to help us to delimit the chaotic region. In other words, the region where the order of the Caputo derivative involves and where the presented system in this paper is chaotic. The nature of the chaos has been established using the Lyapunov exponents in the fractional context. The schematic circuit of the proposed fractional-order chaotic system has been presented and simulated in via Mutltisim. The results obtained via Multisim simulation of the chaotic circuit are in good agreement with the results with Matlab simulations. That provided the fractional operators can be applied in real- worlds applications as modeling electrical circuits. The presence of coexisting attractors for particular values of the parameters of the presented fractional-order chaotic model has been studied.


2021 ◽  
Author(s):  
L. Minati ◽  
L. V. Gambuzza ◽  
W. J. Thio ◽  
J. C. Sprott ◽  
M. Frasca
Keyword(s):  

2021 ◽  
Author(s):  
Valerii Y. Ostrovskii ◽  
Alexander V. Zubarev ◽  
Vyacheslav G. Rybin ◽  
Timur I. Karimov
Keyword(s):  

2021 ◽  
Vol 67 (5 Sep-Oct) ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Abdon Atangana ◽  
Taseer Muhammad ◽  
Ebraheem Alzahrani

The dynamical system has an important research area and due to its wide applications many researchers and scientists working to develop new model and techniques for their solution. We present in this work the dynamics of a chaotic model in the presence of newly introduced fractal-fractional operators. The model is formulated initially in ordinary differential equations and then we utilize the fractal-fractional (FF) in power law, exponential and Mittag-Leffler to generalize the model. For each fractal-fractional order model, we briefly study its numerical solution via the numerical algorithm. We present some graphical results with arbitrary order of fractal and fractional orders, and present that these operators provide different chaotic attractors for different fractal and fractional order values. The graphical results demonstrate the effectiveness of the fractal-fractional operators.


Sign in / Sign up

Export Citation Format

Share Document