Effect of Temperature on a Two-Phase Clock-Driven Discrete-Time Chaotic Circuit

2013 ◽  
Vol 30 (2) ◽  
pp. 020501
Author(s):  
Ji-Chao Zhou ◽  
Song Han-Jung
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1462
Author(s):  
Ming-Fa Tsai ◽  
Chung-Shi Tseng ◽  
Po-Jen Cheng

This paper presents the design and implementation of an application-specific integrated circuit (ASIC) for a discrete-time current control and space-vector pulse-width modulation (SVPWM) with asymmetric five-segment switching scheme for AC motor drives. As compared to a conventional three-phase symmetric seven-segment switching SVPWM scheme, the proposed method involves five-segment two-phase switching in each switching period, so the inverter switching times and power loss can be reduced by 33%. In addition, the produced PWM signal is asymmetric with respect to the center-symmetric triangular carrier wave, and the voltage command signal from the discrete-time current control output can be given in each half period of the PWM switching time interval, hence increasing the system bandwidth and allowing the motor drive system with better dynamic response. For the verification of the proposed SVPWM modulation scheme, the current control function in the stationary reference frame is also included in the design of the ASIC. The design is firstly verified by using PSIM simulation tool. Then, a DE0-nano field programmable gate array (FPGA) control board is employed to drive a 300W permanent-magnet synchronous motor (PMSM) for the experimental verification of the ASIC.


2008 ◽  
Vol 47 (11-12) ◽  
pp. 1246-1253 ◽  
Author(s):  
Subrata Saha ◽  
Attahiru Sule Alfa

1967 ◽  
Vol 40 (5) ◽  
pp. 1373-1380 ◽  
Author(s):  
E. Fischer ◽  
J. F. Henderson

Abstract Stress, strain, and optical properties of three elastomeric styrene butadiene block copolymers containing 31, 40 and 49 wt per cent styrene were studied as a function of temperature. Mechanical and optical properties indicate that these materials are two phase systems in which the polybutadiene chains form an elastomeric phase and the polystyrene a glassy phase with the latter providing physical crosslinks. Birefringence measurements indicate that decreases in modulus and strength of these materials are associated with decrease in concentration of elastically effective network chains. Independence of stress-optical coefficient of temperature suggests that the decrease in concentration of elastically effective chains is not due to onset of rubberlike behavior or flow within the polystyrene regions themselves, at least for temperatures below about 70° C. Rather, the decrease seems to be associated with increased mobility of the polybutadiene chains at higher temperatures, which also leads to an increase in the rate of stress relaxation. Birefringence measured during extension and retraction showed that stress strain hysteresis is due to restricted mobility of polybutadiene chain segments rather than to permanent viscous flow or to change in the effective network structure of the block copolymers. The ultimate properties of these rubbers were well correlated with the effective network structure in undeformed specimens.


Sign in / Sign up

Export Citation Format

Share Document