Specific expression of low-voltage-activated calcium channel isoforms and splice variants in thalamic local circuit interneurons

2007 ◽  
Vol 36 (2) ◽  
pp. 132-145 ◽  
Author(s):  
Tilman Broicher ◽  
Tatyana Kanyshkova ◽  
Peter Landgraf ◽  
Vladan Rankovic ◽  
Patrick Meuth ◽  
...  
Glia ◽  
2004 ◽  
Vol 48 (2) ◽  
pp. 112-119 ◽  
Author(s):  
Isabelle Latour ◽  
Deon F. Louw ◽  
Aaron M. Beedle ◽  
Jawed Hamid ◽  
Garnette R. Sutherland ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ruslan Stanika ◽  
Marta Campiglio ◽  
Alexandra Pinggera ◽  
Amy Lee ◽  
Jörg Striessnig ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexandra Bunda ◽  
Brianna LaCarubba ◽  
Melanie Bertolino ◽  
Marie Akiki ◽  
Kevin Bath ◽  
...  

Abstract Presynaptic CaV2.2 channels control calcium entry that triggers neurotransmitter release at both central and peripheral synapses. The Cacna1b gene encodes the α1-pore forming subunit of CaV2.2 channels. Distinct subsets of splice variants of CaV2.2 derived from cell-specific alternative splicing of the Cacna1b pre-mRNA are expressed in specific subpopulations of neurons. Four cell-specific sites of alternative splicing in Cacna1b that alter CaV2.2 channel function have been described in detail: three cassette exons (e18a, e24a, and e31a) and a pair of mutually exclusive exons (e37a/e37b). Cacna1b mRNAs containing e37a are highly enriched in a subpopulation of nociceptors where they influence nociception and morphine analgesia. E37a-Cacna1b mRNAs are also expressed in brain, but their cell-specific expression in this part of the nervous system, their functional consequences in central synapses and their role on complex behavior have not been studied. In this report, we show that e37a-Cacna1b mRNAs are expressed in excitatory projection neurons where CaV2.2 channels are known to influence transmitter release at excitatory inputs from entorhinal cortex (EC) to dentate gyrus (DG). By comparing behaviors of WT mice to those that only express e37b-CaV2.2 channels, we found evidence that e37a-CaV2.2 enhances behavioral responses to aversive stimuli. Our results suggest that alternative splicing of Cacna1b e37a influences excitatory transmitter release and couples to complex behaviors.


2014 ◽  
Vol 94 (1) ◽  
pp. 303-326 ◽  
Author(s):  
Franz Hofmann ◽  
Veit Flockerzi ◽  
Sabine Kahl ◽  
Jörg W. Wegener

The L-type Cav1.2 calcium channel is present throughout the animal kingdom and is essential for some aspects of CNS function, cardiac and smooth muscle contractility, neuroendocrine regulation, and multiple other processes. The L-type CaV1.2 channel is built by up to four subunits; all subunits exist in various splice variants that potentially affect the biophysical and biological functions of the channel. Many of the CaV1.2 channel properties have been analyzed in heterologous expression systems including regulation of the L-type CaV1.2 channel by Ca2+ itself and protein kinases. However, targeted mutations of the calcium channel genes confirmed only some of these in vitro findings. Substitution of the respective serines by alanine showed that β-adrenergic upregulation of the cardiac CaV1.2 channel did not depend on the phosphorylation of the in vitro specified amino acids. Moreover, well-established in vitro phosphorylation sites of the CaVβ2 subunit of the cardiac L-type CaV1.2 channel were found to be irrelevant for the in vivo regulation of the channel. However, the molecular basis of some kinetic properties, such as Ca2+-dependent inactivation and facilitation, has been approved by in vivo mutagenesis of the CaV1.2α1 gene. This article summarizes recent findings on the in vivo relevance of well-established in vitro results.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Imran H. Chowdhury ◽  
Hema P. Narra ◽  
Abha Sahni ◽  
Kamil Khanipov ◽  
Casey L. C. Schroeder ◽  
...  

Endothelial cell interactions with lipopolysaccharide (LPS) involve both activating and repressing signals resulting in pronounced alterations in their transcriptome and proteome. Noncoding RNAs are now appreciated as posttranscriptional and translational regulators of cellular signaling and responses, but their expression status and roles during endothelial interactions with LPS are not well understood. We report on the expression profile of long noncoding (lnc) RNAs of human microvascular endothelial cells in response to LPS. We have identified a total of 10,781 and 8310 lncRNA transcripts displaying either positive or negative regulation of expression, respectively, at 3 and 24 h posttreatment. A majority of LPS-induced lncRNAs are multiexonic and distributed across the genome as evidenced by their presence on all chromosomes. Present among these are a total of 44 lncRNAs with known regulatory functions, of which 41 multiexonic lncRNAs have multiple splice variants. We have further validated splice variant-specific expression of EGO (NONHSAT087634) and HOTAIRM1 (NONHSAT119666) at 3 h and significant upregulation of lnc-IL7R at 24 h. This study illustrates the genome-wide regulation of endothelial lncRNA splice variants in response to LPS and provides a foundation for further investigations of differentially expressed lncRNA transcripts in endothelial responses to LPS and pathophysiology of sepsis/septic shock.


Sign in / Sign up

Export Citation Format

Share Document