Progressive tool flank wear monitoring by applying discrete wavelet transform on turned surface images

Measurement ◽  
2016 ◽  
Vol 77 ◽  
pp. 388-401 ◽  
Author(s):  
Samik Dutta ◽  
Surjya K. Pal ◽  
Ranjan Sen
Author(s):  
Samik Dutta ◽  
Surjya K Pal ◽  
Ranjan Sen

Indirect tool condition monitoring in end milling is inevitable to produce high-quality finished products due to the complexity of end-milling process. Among the various indirect tool condition monitoring techniques, monitoring based on image processing by analyzing the surface images of final product is gaining high importance due to its non-tactile and flexible nature. The advances in computing facilities, texture analysis techniques and learning machines make these techniques feasible for progressive tool flank wear monitoring. In this article, captured end-milled surface images are analyzed using gray level co-occurrence matrix–based and discrete wavelet transform–based texture analyses to extract features which have a good correlation with progressive tool flank wear. Contrast and second diagonal moment are extracted from gray level co-occurrence matrix and root mean square and energy are extracted from discrete wavelet decomposition of end-milled surface images as features. Finally, these four features are utilized to build support vector machine–based regression models for predicting progressive tool flank wear with 94.8% average correlation between predicted and measured tool flank wear values.


Author(s):  
Samik Dutta ◽  
Surjya K. Pal ◽  
Ranjan Sen

In this paper, a method for predicting progressive tool flank wear using extracted features from turned surface images has been proposed. Acquired turned surface images are analyzed by using texture analyses, viz., gray level co-occurrence matrix (GLCM), Voronoi tessellation (VT), and discrete wavelet transform (DWT) based methods to obtain information about waviness, feed marks, and roughness from machined surface images for describing tool flank wear. Two features from each texture analyses are extracted and fed into support vector machine (SVM) based regression models for predicting progressive tool flank wear. Mean correlation coefficient between the measured and predicted tool flank wear is found as 0.991.


Informatica ◽  
2013 ◽  
Vol 24 (4) ◽  
pp. 657-675
Author(s):  
Jonas Valantinas ◽  
Deividas Kančelkis ◽  
Rokas Valantinas ◽  
Gintarė Viščiūtė

2020 ◽  
Vol 64 (3) ◽  
pp. 30401-1-30401-14 ◽  
Author(s):  
Chih-Hsien Hsia ◽  
Ting-Yu Lin ◽  
Jen-Shiun Chiang

Abstract In recent years, the preservation of handwritten historical documents and scripts archived by digitized images has been gradually emphasized. However, the selection of different thicknesses of the paper for printing or writing is likely to make the content of the back page seep into the front page. In order to solve this, a cost-efficient document image system is proposed. In this system, the authors use Adaptive Directional Lifting-Based Discrete Wavelet Transform to transform image data from spatial domain to frequency domain and perform on high and low frequencies, respectively. For low frequencies, the authors use local threshold to remove most background information. For high frequencies, they use modified Least Mean Square training algorithm to produce a unique weighted mask and perform convolution on original frequency, respectively. Afterward, Inverse Adaptive Directional Lifting-Based Discrete Wavelet Transform is performed to reconstruct the four subband images to a resulting image with original size. Finally, a global binarization method, Otsu’s method, is applied to transform a gray scale image to a binary image as the output result. The results show that the difference in operation time of this work between a personal computer (PC) and Raspberry Pi is little. Therefore, the proposed cost-efficient document image system which performed on Raspberry Pi embedded platform has the same performance and obtains the same results as those performed on a PC.


Sign in / Sign up

Export Citation Format

Share Document