milled surface
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 35)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Antal Nagy ◽  
Janos Kundrak

In this article, we analyze the difference (inhomogeneity) of the roughness values measured on a nonalloy carbon steel surface milled with a parallelogram-shaped (κr = 90°) insert as a function of the the tool movement direction and the relative position of the examining points on the workpiece surface. The characteristic distribution of roughness and the magnitude of the deviations were examined by measuring at selected points along several planes on a surface characterized by the movement conditions of the workpiece and the symmetrically arranged tool perpendicular to the machined surface, which formed double milling marks. The selected points mark the lines with specified inclinations with respect to the feed direction, and their measured values were compared. In these directions, the magnitude of the difference in roughness measures was obtained.


Author(s):  
Rafaela Oliveira Pilecco ◽  
Kiara Serafini Dapieve ◽  
Gabriela Carrão Aragonez ◽  
Luís Felipe Guilardi ◽  
Guilherme Schmitt de Andrade ◽  
...  

2021 ◽  
Vol 1047 ◽  
pp. 74-81
Author(s):  
Nguyen Huu Loc ◽  
Tring Quoc Hung

This paper discusses the experimental study and the mechanism of chip formation, sliding and cutting in processing wood milling surface. The main objective is to determine chip thickness upon the coefficient k and tool tip radius ρ. Technically, when analysing we use FCCCD's second-order response surfaces method and analysis of variance (ANOVA) for determining the coefficient k upon the factors of milling cutter diameter D, the feeding per tooth Sz and tool tip radius ρ. According to the obtained experimental results, we determined the value domain of the machine's working factors so that the cutter tool tip can slide or cut the chip on the milled surface of tropical wood materials. From the coefficient k, we can determine the slide length Lsl which gives reason for the abrasion phenomenon of the front or rear sides of the cutter. The results allow us to choose the geometrical parameters ​​for milling cutter, apart from the working parameters for processing the surface of wood materials with the highest quality as possible.


2021 ◽  
Vol 901 ◽  
pp. 199-207
Author(s):  
Deepak K. Prajaapti

Due to experimental limitations, sometimes it is challenging to tackle the thorough change in asperity characteristics (contact pressure, real area of contact, asperity radius), which demands a more suitable analytical model for prediction of such characteristics. This work demonstrates an approach for modeling sliding wear that provides an insight into the evolution of surface topography with operational cycles. The wear model is applied on various engineered surfaces to study the change in surface topography with wear cycles. It is concluded that different engineered surfaces nearly with same roughness demonstrate totally different behavior during sliding wear. It is observed that milled surface in comparison to turned, honed and grinding surfaces experiences minimum contact pressure due to very high correlation length. Within the range of wear cycles, maximum increase in the asperity radius is observed for milled surface.


Author(s):  
wei Zhang ◽  
Fengsong Bai ◽  
Sihang Zhao ◽  
Lei Zhang ◽  
Ben Wang ◽  
...  

Author(s):  
Liping Wang ◽  
Meng Fu ◽  
Liwen Guan ◽  
Yanyu Chen

The existing studies on profile error analysis and machining accuracy measurement do not consider the impact of the theoretical errors on the machine tool accuracy measurement. Therefore, this study proposes an estimation method of the surface profile error based on the normal section plane, using the theoretical flank milled surface for comparison. This effectively improves the accuracy of profile error estimation. The theoretical flank milled surface is the surface machined by flank milling under ideal conditions. Hence, compared to the traditional analysis method based on the designed three-dimensional model of S-shaped test pieces, the calculated profile error of this method does not include theoretical errors, thereby eliminating the impact of theoretical errors on machine tool accuracy measurement and evaluation. First, an improved method for continuous parameterized dual spline interpolation was proposed. It simplifies the solution of the singular problem of the coefficient matrix of the spline basis function and obtains a continuous ideal machining tool axis trajectory surface with complete geometric characteristics. Next, a method for constructing the theoretical flank milled surface machined with a cylindrical milling tool using equidistant mapping characteristics was proposed; then, the differential transformation relationship at the cutting contact point of the curved surface under the influence of tool path errors was established. Furthermore, the normal section plane method based on the differentiation of the cutting contact point was proposed. The problem of solving the distance from a point to a surface is converted to the problem of solving the distance from a point to a curve in the normal section plane. This improves the accuracy of profile error estimation. The effectiveness of the method was verified by comparing the analysis results of the profile errors of a typical cylindrical surface with the point to surface and the point to curve methods.


Author(s):  
Nobutoshi Ozaki ◽  
Shota Matsui ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Abstract When chatter vibrations occur during cutting, a characteristic pattern called chatter mark appears on the machined surface. In our previous studies, it was estimated that this chatter mark is formed by the tool (or workpiece) vibration in the normal direction with respect to the machined surface. We thus proposed a method to inversely analyze the chatter vibration information during cutting through the chatter mark using two-dimensional discrete Fourier transform. Previous studies confirmed that the analysis results of this method are in good agreement with those of the information obtained via conventional sensing. However, the correctness of the pattern formation mechanism is yet to be directly verified, as it is difficult to measure the cutting phenomenon directly. In this study, the chatter vibration during cutting was measured by the displacement of the tool-shank. Then, based on the results obtained in the static stiffness test, the movement of the tool edge was estimated. A cutting simulation using a voxel model was executed based on this tool-edge movement. When the simulation using the chatter vibration in the normal direction was performed, a chatter mark appeared on the simulated surface. It could thus be confirmed more directly that the analytical model is correct compared with the previous methods.


Author(s):  
C. R. Chighizola ◽  
C. R. D’Elia ◽  
D. Weber ◽  
B. Kirsch ◽  
J. C. Aurich ◽  
...  

Abstract Background While near surface residual stress (NSRS) from milling is a driver for distortion in aluminum parts there are few studies that directly compare available techniques for NSRS measurement. Objective We report application and assessment of four different techniques for evaluating residual stress versus depth in milled aluminum parts. Methods The four techniques are: hole-drilling, slotting, cos(α) x-ray diffraction (XRD), and sin2(ψ) XRD, all including incremental material removal to produce a stress versus depth profile. The milled aluminum parts are cut from stress-relieved plate, AA7050-T7451, with a range of table and tool speeds used to mill a large flat surface in several samples. NSRS measurements are made at specified locations on each sample. Results Resulting data show that NSRS from three techniques are in general agreement: hole-drilling, slotting, and sin2(ψ) XRD. At shallow depths (< 0.03 mm), sin2(ψ) XRD data have the best repeatability (< 15 MPa), but at larger depths (> 0.04 mm) hole-drilling and slotting have the best repeatability (< 10 MPa). NSRS data from cos(α) XRD differ from data provided by other techniques and the data are less repeatable. NSRS data for different milling parameters show that the depth of NSRS increases with feed per tooth and is unaffected by cutting speed. Conclusion Hole-drilling, slotting, and sin2(ψ) XRD provided comparable results when assessing milling-induced near surface residual stress in aluminum. Combining a simple distortion test, comprising removal of a 1 mm thick wafer at the milled surface, with a companion stress analysis showed that NSRS data from hole-drilling are most consistent with milling-induced distortion.


Author(s):  
Antal Nagy

Surface roughness is of great importance in the manufacturing industry, as it affects surfaces’ tribological properties (wear, friction, lubrication, etc.), corrosion resistance, fatigue strength and appearance. Areal roughness measurement, which provides a more comprehensive characterization of surfaces, is becoming increasingly popular, but systematic studies are still lacking, so measurements are often analyzed differently. In this paper, the effect of the measurement length is analyzed in the main measurement direction on areal roughness of face milled surface topographies, which were measured with a confocal chromatic sensor.


Sign in / Sign up

Export Citation Format

Share Document