Non-contact resistance and capacitance on-line measurement of lubrication oil film in rolling element bearing employing an electric field coupling method

Measurement ◽  
2016 ◽  
Vol 91 ◽  
pp. 606-612 ◽  
Author(s):  
Kai Xie ◽  
Long-Chao Liu ◽  
Xiao-Ping Li ◽  
Han-Lu Zhang
Author(s):  
S. Chatterton ◽  
P. Borghesani ◽  
P. Pennacchi ◽  
A. Vania

Diagnostics of rolling element bearings is usually performed by the analysis of vibration signal using suitable signal analysis tools, such as the most used and simplest method, Envelope Analysis. This method is based on the identification of bearing damage frequency components in the so-called Square Envelope Spectrum. If the assessment of the bearing health is quite a simple task, the on-line monitoring and the real-time evaluation of the trend of a suitable damage index is a complex task to be performed in an automatic way. The damage index must be robust against variations of system operating conditions and external vibration sources to avoid misleading results. The damage index should be also simple to be evaluated in the case of real-time applications. In the paper, the case of a rolling element bearing in which the defect develops until a permanent failure is described as well as the algorithm implemented for alarm signaling.


Author(s):  
Wenbing Tu ◽  
Jinwen Yang ◽  
Wennian Yu ◽  
Ya Luo

The vibration response of rolling element bearing has a close relation with its fault. An accurate evaluation of the bearing vibration response is essential to the bearing fault diagnosis. At present, most bearing dynamics models are built based on rigid assumptions, which may not faithfully reveal the dynamic characteristics of bearing in the presence of fault. Moreover, previous similar works mainly focus on the fault with a specified size without considering the varying contact characteristics as the fault evolves. This paper developed an explicit dynamics finite element model for the bearing with three types of raceway faults considering the flexibility of each bearing component in order to accurately study the contact characteristic and vibration mechanism of defective bearings in the process of fault evolution. The developed model is validated by comparing its simulation results with both analytical and experimental results. The dynamic contact patterns between the rolling elements and the fault, the additional displacement due to the fault and the faulty characteristics within the bearing vibration signal during the fault evolution process are investigated. The analysis results from this work can provide practitioners an in-depth understanding towards the internal contact characteristics with the existence of raceway fault and theoretical basis for rolling bearing fault diagnosis.


Sign in / Sign up

Export Citation Format

Share Document