A reinforcement learning unit matching recurrent neural network for the state trend prediction of rolling bearings

Measurement ◽  
2019 ◽  
Vol 145 ◽  
pp. 191-203 ◽  
Author(s):  
Feng Li ◽  
Yong Chen ◽  
Jiaxu Wang ◽  
Xueming Zhou ◽  
Baoping Tang
2021 ◽  
Vol 2 (1) ◽  
pp. 1-25
Author(s):  
Yongsen Ma ◽  
Sheheryar Arshad ◽  
Swetha Muniraju ◽  
Eric Torkildson ◽  
Enrico Rantala ◽  
...  

In recent years, Channel State Information (CSI) measured by WiFi is widely used for human activity recognition. In this article, we propose a deep learning design for location- and person-independent activity recognition with WiFi. The proposed design consists of three Deep Neural Networks (DNNs): a 2D Convolutional Neural Network (CNN) as the recognition algorithm, a 1D CNN as the state machine, and a reinforcement learning agent for neural architecture search. The recognition algorithm learns location- and person-independent features from different perspectives of CSI data. The state machine learns temporal dependency information from history classification results. The reinforcement learning agent optimizes the neural architecture of the recognition algorithm using a Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM). The proposed design is evaluated in a lab environment with different WiFi device locations, antenna orientations, sitting/standing/walking locations/orientations, and multiple persons. The proposed design has 97% average accuracy when testing devices and persons are not seen during training. The proposed design is also evaluated by two public datasets with accuracy of 80% and 83%. The proposed design needs very little human efforts for ground truth labeling, feature engineering, signal processing, and tuning of learning parameters and hyperparameters.


2008 ◽  
Vol 71 (16-18) ◽  
pp. 3379-3386 ◽  
Author(s):  
Daichi Kimura ◽  
Yoshinori Hayakawa

2018 ◽  
Vol 30 (7) ◽  
pp. 1983-2004 ◽  
Author(s):  
Yazhou Hu ◽  
Bailu Si

We propose a neural network model for reinforcement learning to control a robotic manipulator with unknown parameters and dead zones. The model is composed of three networks. The state of the robotic manipulator is predicted by the state network of the model, the action policy is learned by the action network, and the performance index of the action policy is estimated by a critic network. The three networks work together to optimize the performance index based on the reinforcement learning control scheme. The convergence of the learning methods is analyzed. Application of the proposed model on a simulated two-link robotic manipulator demonstrates the effectiveness and the stability of the model.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092167
Author(s):  
Hao Quan ◽  
Yansheng Li ◽  
Yi Zhang

At present, the application of mobile robots is more and more extensive, and the movement of mobile robots cannot be separated from effective navigation, especially path exploration. Aiming at navigation problems, this article proposes a method based on deep reinforcement learning and recurrent neural network, which combines double net and recurrent neural network modules with reinforcement learning ideas. At the same time, this article designed the corresponding parameter function to improve the performance of the model. In order to test the effectiveness of this method, based on the grid map model, this paper trains in a two-dimensional simulation environment, a three-dimensional TurtleBot simulation environment, and a physical robot environment, and obtains relevant data for peer-to-peer analysis. The experimental results show that the proposed algorithm has a good improvement in path finding efficiency and path length.


2018 ◽  
Vol 77 ◽  
pp. 167-178 ◽  
Author(s):  
Han Liu ◽  
Jianzhong Zhou ◽  
Yang Zheng ◽  
Wei Jiang ◽  
Yuncheng Zhang

2020 ◽  
Vol 10 (15) ◽  
pp. 5355 ◽  
Author(s):  
Ratiranjan Jena ◽  
Biswajeet Pradhan ◽  
Abdullah M. Alamri

The eastern region of India, including the coastal state of Odisha, is a moderately seismic-prone area under seismic zones II and III. However, no major studies have been conducted on earthquake probability (EPA) and hazard assessment (EHA) in Odisha. This paper had two main objectives: (1) to assess the susceptibility of seismic wave amplification (SSA) and (2) to estimate EPA in Odisha. In total, 12 indicators were employed to assess the SSA and EPA. Firstly, using the historical earthquake catalog, the peak ground acceleration (PGA) and intensity variation was observed for the Indian subcontinent. We identified high amplitude and frequency locations for estimated PGA and the periodograms were plotted. Secondly, several indicators such as slope, elevation, curvature, and amplification values of rocks were used to generate SSA using predefined weights of layers. Thirdly, 10 indicators were implemented in a developed recurrent neural network (RNN) model to create an earthquake probability map (EPM). According to the results, recent to quaternary unconsolidated sedimentary rocks and alluvial deposits have great potential to amplify earthquake intensity and consequently lead to acute ground motion. High intensity was observed in coastal and central parts of the state. Complicated morphometric structures along with high intensity variation could be other parameters that influence deposits in the Mahanadi River and its delta with high potential. The RNN model was employed to create a probability map (EPM) for the state. Results show that the Mahanadi basin has dominant structural control on earthquakes that could be found in the western parts of the state. Major faults were pointed towards a direction of WNW–ESE, NE–SW, and NNW–SSE, which may lead to isoseismic patterns. Results also show that the western part is highly probable for events while the eastern coastal part is highly susceptible to seismic amplification. The RNN model achieved an accuracy of 0.94, precision (0.94), recall (0.97), F1 score (0.96), critical success index (CSI) (0.92), and a Fowlkes–Mallows index (FM) (0.95).


Sign in / Sign up

Export Citation Format

Share Document