Leaky Lamb wave–based resin impregnation monitoring with noninvasive and integrated piezoelectric sensor network

Measurement ◽  
2021 ◽  
pp. 110480
Author(s):  
Xiao Liu ◽  
Yinghong Yu ◽  
Jun Li ◽  
Jianjian Zhu ◽  
Yishou Wang ◽  
...  
2021 ◽  
pp. 147592172110332
Author(s):  
Mehrdad Ghyabi ◽  
Hamidreza Nemati ◽  
Ehsan Dehghan-Niri

In this article, the coverage area prediction of piezoelectric sensor network for detecting a specific type of under-surface crack in plate-like structures is addressed. In particular, this article proposes a simplified framework to estimate the coverage of any given sensor network arrangement when a critical defect is known. Based on numerical results from finite element methods (FEM), a simplified framework to estimate coverage area of any given network arrangement is developed. Using such a simplified framework, one can avoid time-consuming procedure of evaluating numerous FEM models in estimating sensor network coverage. Back-scatter fields of partial cracks are estimated using a proposed function, whose parameters are estimated from the results of a limited number of FEM simulations. The proposed function efficiently predicts the back-scattered field of any combination of transmitters and receivers for a given crack geometry. Superposition is used to estimate the coverage area of an arbitrary piezoelectric (e.g., PZT) sensor network. It is shown that the coverage area of a sensor network depends on both sensor network geometry and defect properties (e.g., crack inclination) and it is not necessarily a linear function of the number of sensors. Furthermore, it is shown that the network arrangement has an important effect on the geometry of the coverage area. Experimental results of a network of 14 PZTs in two clusters confirm the accuracy of the method.


1999 ◽  
Vol 172 (1) ◽  
pp. 105-111 ◽  
Author(s):  
K. Van de Rostyne ◽  
C. Glorieux ◽  
W. Gao ◽  
V. Gusev ◽  
M. Nesladek ◽  
...  

2020 ◽  
Vol 10 (22) ◽  
pp. 8104
Author(s):  
Sang-Jin Park ◽  
Hoe-Woong Kim ◽  
Young-Sang Joo

In this paper, leaky Lamb wave radiation from a waveguide plate with finite width is investigated to gain a basic understanding of the radiation characteristics of the plate-type waveguide sensor. Although the leaky Lamb wave behavior has already been theoretically revealed, most studies have only dealt with two dimensional radiations of a single leaky Lamb wave mode in an infinitely wide plate, and the effect of the width modes (that are additionally formed by the lateral sides of the plate) on leaky Lamb wave radiation has not been fully addressed. This work aimed to explain the propagation behavior and characteristics of the Lamb waves induced by the existence of the width modes and to reveal their effects on leaky Lamb wave radiation for the performance improvement of the waveguide sensor. To investigate the effect of the width modes in a waveguide plate with finite width, propagation characteristics of the Lamb waves were analyzed by the semi-analytical finite element (SAFE) method. Then, the Lamb wave radiation was computationally modeled on the basis of the analyzed propagation characteristics and was also experimentally measured for comparison. From the modeled and measured results of the leaky radiation beam, it was found that the width modes could affect leaky Lamb wave radiation with the mode superposition and radiation characteristics were significantly changed depending on the wave phase of the superposed modes on the radiation surface.


2017 ◽  
Author(s):  
Zhiwu An ◽  
Zhongtao Hu ◽  
Jie Mao ◽  
Guoxuan Lian ◽  
Xiaomin Wang

Sign in / Sign up

Export Citation Format

Share Document