Singularity-free workspace analysis of general 6-UPS parallel mechanisms via convex optimization

2014 ◽  
Vol 80 ◽  
pp. 17-34 ◽  
Author(s):  
Amirhossein Karimi ◽  
Mehdi Tale Masouleh ◽  
Philippe Cardou
2013 ◽  
Vol 456 ◽  
pp. 146-150
Author(s):  
Zhi Jiang Xie ◽  
Jun Zhang ◽  
Xiao Bo Liu

This paper designed a kind of parallel mechanism with three degrees of freedom, the freedom and movement types of the robot are analyzed in detail, the parallel mechanisms Kinematics positive and inverse solutions are derived through using the vector method. And at last its workspace is analyzed and studied systematically.


2001 ◽  
Vol 13 (5) ◽  
pp. 488-496 ◽  
Author(s):  
Noriaki Ando ◽  
◽  
Masahiro Ohta ◽  
Kohei Gonda ◽  
Hideki Hashimoto

This paper describes the research results on telemicromanipulation systems for microlevel tasks. Because of its better manipulation precision, stiffness and speed characteristics, the parallel mechanism micromanipulator was chosen to compose our systems. First, the kinematic analysis of our original manipulator mechanism is performed. Then, the structure of our parallel manipulator, control scheme, and experimental results are shown. Position accuracy and device control characteristics are analyzed and the feasibility of the use of parallel mechanisms for micromanipulator is then discussed. A parallel manipulator motion is restricted by 3 factors: mechanical limits of the passive joints, collision between links and actuators limitations. Results of the numerical workspace analysis considering the above factors are shown. We are proposing the use of dual manipulators for implementing improved real manipulation systems. The first kinematics and workspace analysis of dual systems using the VR simulator are also shown.


Author(s):  
H Alp ◽  
İ Özkol

The aim of this study is to present a new model to extend the workspace of a parallel working machine in a chosen direction. Therefore, the existing mathematical models are combined and developed to represent the extension of the workspace of a 6° parallel working machine. For this purpose, the 6-3 Stewart platform mechanism (SPM), which is commonly used in robotic applications, material processing, and flight simulation, and the 6-4 SPM have been chosen. Although there are many studies on parallel mechanisms, the workspace analysis of a parallel working mechanism has not yet been generalized. This study determines the workspace of a parallel working mechanism in the direction perpendicular to the moving platform, which is the most workable direction. For these types of working mechanisms, i.e. mechanical tools used for material processing that is forced to move in a certain chosen direction, the determination of the point in that direction at which the workspace is maximum has to be outlined. After carrying out a kinematic analysis, the discretization method, which is based on Euler angles, is used to represent the orientation workspace of these parallel working mechanisms. Additionally, the orientation workspaces of the 6-3 SPM and the 6-4 SPM are compared. Results are presented in a cylindrical coordinate system.


2013 ◽  
Vol 5 (4) ◽  
Author(s):  
Hongliang Shi ◽  
Hai-Jun Su

This paper presents an analytical model for calculating the workspace of a flexure-based hexapod nanopositioner previously built by the National Institute of Standards and Technology (NIST). This nanopositioner is capable of producing high-resolution motions in six degrees of freedom by actuating linear actuators on a planar tri-stage. However, the workspace of this positioner is still unknown, which limits its uses in practical applications. In this work, we seek to derive a kinematic model for predicting the workspace of such kinds of flexure based platforms by assuming that their workspace is mainly constrained by the deformation of flexure joints. We first study the maximum deformation including bending and torsion angles of an individual flexure joint. We then derive the inverse kinematics and calculation of bending and torsion angles of each wire flexure in the overall mechanism with given position of the top platform center of the hexapod nanopositioner. At last, we compare results with finite element models of the entire platform. This model is beneficial for workspace analysis and optimization for design of compliant parallel mechanisms.


Author(s):  
Jiangzhen Guo ◽  
Dan Wang ◽  
Rui Fan ◽  
Wuyi Chen

Traditional parallel mechanisms are usually characterized by small tilting capability. To overcome this problem, a 3-degree-of-freedom parallel swivel head with large tilting capacity is proposed in this article. The proposed parallel swivel head, which is structurally developed from a conventional 3-PRS parallel mechanism, can achieve a large tilting capability by means of structural improvements. First, a modified spherical joint with a maximum tilting angle of ±120° is devised to diminish the physical restrictions on the orientation workspace. Second, a UPS typed leg is introduced for the sake of singularity elimination. The superiority of the proposed parallel swivel head is theoretically proved by investigations of singularity-free orientation workspace and then is experimentally validated using a prototype fabricated. The theoretical and experimental results illustrate that the proposed parallel swivel head has a large tilting capacity and thus can be used as swivel head for a hybrid machine tool which is designed to be capable of realizing both horizontal and vertical machining.


Author(s):  
Mehdi Tale Masouleh ◽  
Mohammad Hossein Saadatzi ◽  
Cle´ment Gosselin ◽  
Hamid D. Taghirad

This paper investigates an important kinematic property, the constant-orientation workspace, of five-degree-of-freedom parallel mechanisms generating the 3T2R motion and comprising five identical limbs of the PRUR type. The general mechanism originates from the type synthesis performed for symmetrical 5-DOF parallel mechanism. In this study, the emphasis is placed on the determination of constant-orientation workspace using geometrical interpretation of the so-called vertex space, i.e., motion generated by a limb for a given orientation, rather than relying on classical recipes, such as discretization methods. For the sake of better understanding a CAD model is also provided for the vertex space. The constructive geometric approach presented in this paper provides some insight into the architecture optimization. Moreover, this approach facilitates the computation of the evolution of the volume of the constant-orientation workspace for different orientations of the end-effector.


2011 ◽  
Vol 308-310 ◽  
pp. 2114-2119 ◽  
Author(s):  
Peng Lin Jing ◽  
Zhi You Feng

A new 4 DOF parallel mechanism with serial input limb is presented ——2UPS-RPU parallel mechanism, the limb with serial input is a less contrained active branched-chain,the number of its DOF is less than six,that is to say,the limbs not only transmitting driving force but also constraint force at the same time.Compared with traditional parallel mechanisms,the mechanism with serial input has greater number of DOF than the number of limbs and don’t lose the property of parallel mechanism. The inverse solutions to positions of the mechanism are modeled by inverse kinematic analysis in this paper, then the constraint conditions are established according to factors influencing the workspace of parallel mechanism,such as the limits of the hinge angle and the parallel link length.The workspace of 2UPS-RPU parallel mechanism can be obtained by using exetreme-boundary numerical algorithm in Matlab,the volume of workspace can be quantified by means of computation,and analyzing the impact of rod length ,circumradius of moving and fixed platform and motion pair rotation angle on the workspace.


Sign in / Sign up

Export Citation Format

Share Document