Multi-objective optimization of the two-stage helical gearbox with tribological constraints

2019 ◽  
Vol 138 ◽  
pp. 38-57 ◽  
Author(s):  
Maruti Patil ◽  
P. Ramkumar ◽  
K. Shankar
Author(s):  
Doan V. K. Khanh ◽  
Pandian Vasant ◽  
Irraivan Elamvazuthi ◽  
Vo N. Dieu

In this chapter, the technical issues of two-stage TEC were discussed. After that, a new method of optimizing the dimension of TECs using differential evolution to maximize the cooling rate and coefficient of performance was proposed. A input current to hot side and cold side of and the number ratio between the hot stage and cold stage are searched the optima solutions. Thermal resistance is taken into consideration. The results of optimization obtained by using differential evolution were validated by comparing with those obtained by using genetic algorithm and show better performance in terms of stability, computational efficiency, robustness. This work revealed that differential evolution more stable than genetic algorithm and the Pareto front obtained from multi-objective optimization balances the important role between cooling rate and coefficient of performance.


2021 ◽  
pp. 107263
Author(s):  
Fei Ming ◽  
Wenyin Gong ◽  
Huixiang Zhen ◽  
Shuijia Li ◽  
Ling Wang ◽  
...  

Author(s):  
Nader Alihosseini ◽  
Gholamreza Salehi ◽  
Arash Mirabdolah Lavasani

In this research, the performance of serial two-stage compression (STC) cycle and bypass two-stage compression (BTC) cycle on the household refrigerator-freezers is tested in the laboratory. Then, based on the results of the experiments, exergy, exergoeconomic analyses, and cycle optimization are carried out. Considering that replacing refrigerants in household refrigerator-freezers is one of the approaches to increase the performance and environmental impact of these systems, R436A refrigerant (46% Isobutene and 54% Propane mixture) is used and analyzed to replace previous refrigerants. Finally, the multi-objective optimization of the mentioned cycles is performed with both refrigerants. For analyses, two models of refrigerator-freezers with different cycles are used (STC cycle with R134a refrigerant and BTC cycle with R-600a refrigerant). In both models, two evaporators for refrigerator-freezer compartments are used. International standards (IEC 62552) are used to test refrigerator-freezers. MATLAB and REFPROP 9.1 software are used to model the systems. According to the results of the analyses, the STC cycle with R436A refrigerant has more total exergy destruction rate (0.727 kW) compared to R134a refrigerant. In the BTC cycle, in which the fresh food compartment (FFC) and freezer compartment (FZC) operate, the total exergy destruction rate with R-600a refrigerant (0.422 kW) is less than with R436A refrigerant. In the case of the BTC cycle in which only the FZC operates, the total exergy destruction rate with R-600a refrigerant (0.455 kW) is less than with R436A refrigerant. The most exergoeconomic factor among cycle equipment is related to the compressor (about 98%). The highest COP value between cycles is related to the STC cycle with R134a refrigerant.


Sign in / Sign up

Export Citation Format

Share Document