Optimal design of the gear ratio of a power reflux hydraulic transmission system based on data mining

2019 ◽  
Vol 142 ◽  
pp. 103600 ◽  
Author(s):  
Yingzhe Kan ◽  
Dongye Sun ◽  
Yong Luo ◽  
Datong Qin ◽  
Junren Shi ◽  
...  
1982 ◽  
Vol 104 (4) ◽  
pp. 749-757 ◽  
Author(s):  
M. Savage ◽  
J. J. Coy ◽  
D. P. Townsend

The design of a standard gear mesh is treated with the objective of minimizing the gear size for a given ratio, pinion torque, and allowable tooth strength. Scoring, pitting fatigue, bending fatigue, and the kinematic limits of contact ratio and interference are considered. A design space is defined in terms of the number of teeth on the pinion and the diametral pitch. This space is then combined with the objective function of minimum center distance to obtain an optimal design region. This region defines the number of pinion teeth for the most compact design. The number is a function of the gear ratio only. A design example illustrating this procedure is also given.


Author(s):  
Yanli Shao ◽  
Huawei Zhu ◽  
Rui Wang ◽  
Ying Liu ◽  
Yusheng Liu

Abstract Traditional design optimization is an iterative process of design, simulation, and redesign, which requires extensive calculations and analysis. The designer needs to adjust and evaluate the design parameters manually and continually based on the simulation results until a satisfactory design is obtained. However, the expensive computational costs and large resource consumption of complex products hinder the wide application of simulation in industry. It is not an easy task to search the optimal design solution intelligently and efficiently. Therefore, a simulation data-driven design approach which combines dynamic simulation data mining and design optimization is proposed to achieve this purpose in this study. The dynamic simulation data mining algorithm—on-line sequential extreme learning machine with adaptive weights (WadaptiveOS-ELM)—is adopted to train the dynamic prediction model to effectively evaluate the merits of new design solutions in the optimization process. Meanwhile, the prediction model is updated incrementally by combining new “good” data set to reduce the modeling cost and improve the prediction accuracy. Furthermore, the improved heuristic optimization algorithm—adaptive and weighted center particle swarm optimization (AWCPSO)—is introduced to guide the design change direction intelligently to improve the search efficiency. In this way, the optimal design solution can be searched automatically with less actual simulation iterations and higher optimization efficiency, and thus supporting the rapid product optimization effectively. The experimental results demonstrate the feasibility and effectiveness of the proposed approach.


Author(s):  
Chang-Ching Chang ◽  
Jer-Fu Wang ◽  
Chi-Chang Lin ◽  
Tzu-Ting Lin ◽  
Chih-Shiuan Lin

Abstract Conventional tuned mass damper (TMD) is a popular and generally accepted vibration control device in the field of passive structural control. However, it was found that the control efficacy of a conventional TMD may significantly degrade when the TMD’s frequency does not tune to its desired value. In addition, the vibration energy of controlled structure transferred into the TMD is dissipated by viscous or friction damper and becomes waste heat. In this paper, a new type of TMD, called electromagnetic TMD inerter (EM-TMDI) is developed by replacing the viscous dampers with electromagnetic rotary transducers so that a more flexible viscous damping can be achieved and part of the energy originally dissipated by the dampers could be harvested. A flywheel with variable mass moment of inertia will be introduced into the transmission system of the TMD to adjust TMD’s frequency to mitigate the frequency detuning effect and to enhance the control efficacy of TMD system. The theoretical derivation is performed to generate the relationship between the DC motor and the transmission system of the EM-TMDI. Optimal design method considering the inerter of rotary transducers will be developed. This study first designed and manufactured a scale-down, double-deck EM-TMDI. A series of shaking table tests were conducted at NCREE Tainan laboratory to verify the capability of inerter to change TMD’s frequency.


2019 ◽  
Vol 137 ◽  
pp. 67-82 ◽  
Author(s):  
Yingzhe Kan ◽  
Dongye Sun ◽  
Yong Luo ◽  
Ke Ma ◽  
Junren Shi

Transport ◽  
2007 ◽  
Vol 22 (4) ◽  
pp. 247-251 ◽  
Author(s):  
Andrzej Bieniek ◽  
Jerzy Jantos ◽  
Jarosław Mamala

The correct work of a power transmission system for the sake of a car motion properties, fuel consumption and pollution emission, requires proper control of an engine and power transmission system. This problem becomes especially significant in the case of automation of the power transmission system and particularly regarding the system of constant gear ratio change between the engine and drive wheels (Continuously Variable Transmission), examined in the paper. This control is based on friction degree conditions estimation between metal belt and the transmission wheels. This paper also describes the experimental results of bench test and road test and applying of different control strategies.


Sign in / Sign up

Export Citation Format

Share Document