Using discrete optimization algorithms to find minimum energy configurations of slender cantilever beams with non-convex energy functions

2009 ◽  
Vol 36 (7) ◽  
pp. 811-817 ◽  
Author(s):  
Krishna R. Narayanan ◽  
Arun R. Srinivasa
1979 ◽  
Vol 57 (5) ◽  
pp. 538-551 ◽  
Author(s):  
Peeter Kruus ◽  
Barbara E. Poppe

A model of solutions of alkali halides in DMSO is developed. Each ion is described by a radius, a charge, a polarizability, and an exponential repulsion parameter. Each molecule is described by a polarizability, charges, 6-12 energy parameters, and 6-12 distance parameters centered on each of the 10 atoms in the molecule. The model is applied to calculate (i) the vaporization energy of solvent molecules, (ii) single ion solvation energies and configurations of the solvating molecules, and (iii) the energy as a function of reaction coordinate for the formation of an ion pair. The energies and configurations are obtained by allowing the systems to relax to minimum energy configurations by allowing motion of the molecules. The results of (i) give a vaporization energy 60% of the experimental. The results of (ii) give solvation energies in reasonable agreement with the experimental, and configurations which are reasonable from the point of view of mobilities of ions. The results of (iii) show the presence of a distinct solvent separated ion pair which actually has an energy lower than the contact ion pair. Advantages and problems involved in using this approach to model solutions are discussed.


Soft Matter ◽  
2008 ◽  
Vol 4 (7) ◽  
pp. 1396 ◽  
Author(s):  
Gernot J. Pauschenwein ◽  
Gerhard Kahl

Author(s):  
Masoud Ansari ◽  
Amir Khajepour ◽  
Ebrahim Esmailzadeh

Vibration control has always been of great interest for many researchers in different fields, especially mechanical and civil engineering. One of the key elements in control of vibration is damper. One way of optimally suppressing unwanted vibrations is to find the best locations of the dampers in the structure, such that the highest dampening effect is achieved. This paper proposes a new approach that turns the conventional discrete optimization problem of optimal damper placement to a continuous topology optimization. In fact, instead of considering a few dampers and run the discrete optimization problem to find their best locations, the whole structure is considered to be connected to infinite numbers of dampers and level set topology optimization will be performed to determine the optimal damping set, while certain number of dampers are used, and the minimum energy for the system is achieved. This method has a few major advantages over the conventional methods, and can handle damper placement problem for complicated structures (systems) more accurately. The results, obtained in this research are very promising and show the capability of this method in finding the best damper location is structures.


Nature ◽  
1986 ◽  
Vol 319 (6053) ◽  
pp. 454-454 ◽  
Author(s):  
M.G. CALKIN ◽  
D. KIANG ◽  
D.A. TINDALL

1996 ◽  
Vol 64 (1) ◽  
pp. 157-174 ◽  
Author(s):  
Vittorio Murino ◽  
Carlo S. Regazzoni ◽  
Gian Luca Foresti

2004 ◽  
Vol 16 (23) ◽  
pp. 4165-4175 ◽  
Author(s):  
M F Vaz ◽  
S J Cox ◽  
M D Alonso

Sign in / Sign up

Export Citation Format

Share Document