Fat-saturated Image Generation from Multi-contrast MRIs Using Generative Adversarial Networks with Bloch Equation-based Autoencoder Regularization

2021 ◽  
pp. 102198
Author(s):  
Sewon Kim ◽  
Hanbyol Jang ◽  
Seokjun Hong ◽  
Yeong Sang Hong ◽  
Won C. Bae ◽  
...  
2021 ◽  
Vol 15 ◽  
Author(s):  
Jiasong Wu ◽  
Xiang Qiu ◽  
Jing Zhang ◽  
Fuzhi Wu ◽  
Youyong Kong ◽  
...  

Generative adversarial networks and variational autoencoders (VAEs) provide impressive image generation from Gaussian white noise, but both are difficult to train, since they need a generator (or encoder) and a discriminator (or decoder) to be trained simultaneously, which can easily lead to unstable training. To solve or alleviate these synchronous training problems of generative adversarial networks (GANs) and VAEs, researchers recently proposed generative scattering networks (GSNs), which use wavelet scattering networks (ScatNets) as the encoder to obtain features (or ScatNet embeddings) and convolutional neural networks (CNNs) as the decoder to generate an image. The advantage of GSNs is that the parameters of ScatNets do not need to be learned, while the disadvantage of GSNs is that their ability to obtain representations of ScatNets is slightly weaker than that of CNNs. In addition, the dimensionality reduction method of principal component analysis (PCA) can easily lead to overfitting in the training of GSNs and, therefore, affect the quality of generated images in the testing process. To further improve the quality of generated images while keeping the advantages of GSNs, this study proposes generative fractional scattering networks (GFRSNs), which use more expressive fractional wavelet scattering networks (FrScatNets), instead of ScatNets as the encoder to obtain features (or FrScatNet embeddings) and use similar CNNs of GSNs as the decoder to generate an image. Additionally, this study develops a new dimensionality reduction method named feature-map fusion (FMF) instead of performing PCA to better retain the information of FrScatNets,; it also discusses the effect of image fusion on the quality of the generated image. The experimental results obtained on the CIFAR-10 and CelebA datasets show that the proposed GFRSNs can lead to better generated images than the original GSNs on testing datasets. The experimental results of the proposed GFRSNs with deep convolutional GAN (DCGAN), progressive GAN (PGAN), and CycleGAN are also given.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 1250-1260
Author(s):  
Muhammad Zeeshan Khan ◽  
Saira Jabeen ◽  
Muhammad Usman Ghani Khan ◽  
Tanzila Saba ◽  
Asim Rehmat ◽  
...  

2021 ◽  
Vol 13 (19) ◽  
pp. 3939
Author(s):  
Jihyong Oh ◽  
Munchurl Kim

Although generative adversarial networks (GANs) are successfully applied to diverse fields, training GANs on synthetic aperture radar (SAR) data is a challenging task due to speckle noise. On the one hand, in a learning perspective of human perception, it is natural to learn a task by using information from multiple sources. However, in the previous GAN works on SAR image generation, information on target classes has only been used. Due to the backscattering characteristics of SAR signals, the structures of SAR images are strongly dependent on their pose angles. Nevertheless, the pose angle information has not been incorporated into GAN models for SAR images. In this paper, we propose a novel GAN-based multi-task learning (MTL) method for SAR target image generation, called PeaceGAN, that has two additional structures, a pose estimator and an auxiliary classifier, at the side of its discriminator in order to effectively combine the pose and class information via MTL. Extensive experiments showed that the proposed MTL framework can help the PeaceGAN’s generator effectively learn the distributions of SAR images so that it can better generate the SAR target images more faithfully at intended pose angles for desired target classes in comparison with the recent state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document