Deadend outside-in hollow fiber membrane filter: Mathematical model

2006 ◽  
Vol 279 (1-2) ◽  
pp. 615-624 ◽  
Author(s):  
Yuriy S. Polyakov
ASAIO Journal ◽  
1994 ◽  
Vol 40 (4) ◽  
pp. 990-996 ◽  
Author(s):  
Steven N. Vaslef ◽  
Lyle F. Mockros ◽  
Robert W. Anderson ◽  
Ronald J. Leonard

2016 ◽  
Vol 11 (1) ◽  
pp. 11-15 ◽  
Author(s):  
Javad Aminian Dehkordi ◽  
Seyed Saeid Hosseini ◽  
Prodip K. Kundu ◽  
Nicolas R. Tan

Abstract Hollow fiber membrane permeators used in the separation industry are proven as preferred modules representing various benefits and advantages to gas separation processes. In the present study, a mathematical model is proposed to predict the separation performance of natural gas using hollow fiber membrane modules. The model is used to perform sensitivity analysis to distinguish which process parameters influence the most and are necessary to be assessed appropriately. In this model, SRK equation was used to justify the nonideal behavior of gas mixtures and Joule-Thomson equation was employed to take into account the changes in the temperature due to permeation. Also, the changes in temperature along shell side was calculated via thermodynamic principles. In the proposed mathematical model, the temperature dependence of membrane permeance is justified by the Arrhenius-type equation. Furthermore, a surface mole fraction parameter is introduced to consider the effect of accumulation of less permeable component adjacent to the membrane surface in the feed side. The model is validated using experimental data. Central Composite Designs are used to gain response surface model. For this, fiber inner diameter, active fiber length, module diameter and number of fibers in the module are taken as the input variables related to the physical geometries. Results show that the number as well as the length of the fibers have the most influence on the membrane performance. The maximum mole fraction of CO2 in the permeate stream is observed for low number of fibers and fibers having smaller active lengths. Also results indicate that at constant active fiber length, increasing the number of fibers decreases the permeate mole fraction of CO2. The findings demonstrate the importance of considering appropriate physical geometries for designing hollow fiber membrane permeators for practical gas separation applications.


ASAIO Journal ◽  
1994 ◽  
Vol 40 (4) ◽  
pp. 990-996 ◽  
Author(s):  
Steven N. Vaslef ◽  
Lyle F. Mockros ◽  
Robert W. Anderson ◽  
Ronald J. Leonard

2014 ◽  
Vol 625 ◽  
pp. 726-729 ◽  
Author(s):  
Serene Sow Mun Lock ◽  
Kok Keong Lau ◽  
Mohd Shariff Azmi

A “Multi-component Progressive Cell Balance” approach has been applied to characterize the gas separation of the radial crossflow hollow fiber membrane module. The mathematical model is an indispensable tool to evaluate the separation performance of membrane material towards different components. The approach is required to be implemented since there is scarcely available mathematical model to characterize the two dimensional radial crossflow. In addition, the currently available mathematical model is confined to the ideal binary system, which constraints its applicability in real membrane separation process with many components. The significance of the developed multi-component mathematical model as compared to the model adapting the ideal binary simulation condition is demonstrated in this study.


Sign in / Sign up

Export Citation Format

Share Document