membrane filter
Recently Published Documents


TOTAL DOCUMENTS

990
(FIVE YEARS 84)

H-INDEX

40
(FIVE YEARS 3)

2022 ◽  
pp. 39-42
Author(s):  
Osman Erkmen
Keyword(s):  

Author(s):  
Yuliya Melnyk ◽  
Andriy Melnyk

Ultrafiltration devices are currently being developed and manufactured around the world, and productivity varies greatly from 1 to 300,000 m/day. In practice, ultrafiltration parameters are used and performed in batch, semi-periodic and continuous modes. Continuous and semi-periodic modes are mainly used for large volumes of liquids. In the case of a small volume, the batch mode prefers the continuous mode - the area of the membrane is smaller and it is easier to clean. The deposition of spent grease is based on the fact that mechanical impurities and water are in a suspended state and settle over time. When selecting the process of restoring the quality of the lubricant to the required level, first use a mechanical cleaning method to remove free water and hard dirt. In practice, rough cleaning of the lubricant is carried out using filter elements made of metal mesh with a filtration fineness of 60 ... 80 μm. A complex filter element made of non-woven materials is used for fine cleaning. Type of oil filter "FMN" (cleaning accuracy 15 ... 20 microns). However, these filters cannot provide a degree of purification of the spent lubricant, as the latter contains a large amount of carbon contaminants, preferably with a particle size of less than 5 μm. In the process of ultrafiltration of oil, the initial stream is separated and concentrated. Varnish, resin and other small contaminants are retained by the superporous layer on the surface and are continuously washed away by a tangential flow of purified oil. Only cleaned grease can pass through the membrane. This allows for a long filtration process without replacing the membrane filter element. The ultrafiltration process is performed at a pressure of 0.3-1 MPa and a flow rate of 2-5 m/s, using membranes with a size of 0.1-0.005 μm.


Cellulose ◽  
2021 ◽  
Author(s):  
Shoichi Ide

AbstractIn 1989, Asahi Kasei commercialized a porous hollow fiber membrane filter (Planova™) made of cuprammonium regenerated cellulose, making it possible for the first time in the world to “remove viruses from protein solutions by membrane filtration”. Planova has demonstrated its usefulness in separating proteins and viruses. Filters that remove viruses from protein solutions, i.e., virus removal filters (VFs), have become one of the critical modern technologies to assure viral safety of biological products. It has also become an indispensable technology for the future. The performance characteristics of VFs can be summarized in two points: 1) the virus removal performance increases as the virus diameter increases, and 2) the recovery rate of proteins with molecular weights greater than 10,000 exceeds the practical level. This paper outlines the emergence of VF and its essential roles in the purification process of biological products, requirements for VF, phase separation studies for cuprammonium cellulose solution, comparison between Planova and other regenerated cellulose flat membranes made from other cellulose solutions, and the development of Planova. The superior properties of Planova can be attributed to its highly interconnected three-dimensional network structure. Furthermore, future trends in the VF field, the subject of this review, are discussed.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3899
Author(s):  
John Jackson ◽  
Ali Moallemi ◽  
Mu Chiao ◽  
David Plackett

There is an urgent environmental need to remediate waste water. In this study, the use of surface-modified nanocrystalline cellulose (CNC) to remove polluting drugs or chemicals from waste water and oil sands tailing ponds has been investigated. CNC was modified by either surface adsorbing cationic or hydrophobic species or by covalent methods and integrated into membrane water filters. The removal of either diclofenac or estradiol from water was studied. Similar non-covalently modified CNC materials were used to flocculate clays from water or to bind naphthenic acids which are contaminants in tailing ponds. Estradiol bound well to hydrophobically modified CNC membrane filter systems. Similarly, diclofenac (anionic drug) bound well to covalently cationically modified CNC membranes. Non-covalent modified CNC effectively flocculated clay particles in water and bound two naphthenic acid chemicals (negatively charged and hydrophobic). Modified CNC integrated into water filter membranes may remove drugs from waste or drinking water and contaminants from tailing ponds water. Furthermore, the ability of modified CNC to flocculate clays particles and bind naphthenic acids may allow for the addition of modified CNC directly to tailing ponds to remove both contaminants. CNC offers an environmentally friendly, easily transportable and disposable novel material for water remediation purposes.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3249
Author(s):  
Mohd Nor Faiz Norrrahim ◽  
Noor Azilah Mohd Kasim ◽  
Victor Feizal Knight ◽  
Keat Khim Ong ◽  
Siti Aminah Mohd Noor ◽  
...  

The wide availability and diversity of dangerous microbes poses a considerable problem for health professionals and in the development of new healthcare products. Numerous studies have been conducted to develop membrane filters that have antibacterial properties to solve this problem. Without proper protective filter equipment, healthcare providers, essential workers, and the general public are exposed to the risk of infection. A combination of nanotechnology and biosorption is expected to offer a new and greener approach to improve the usefulness of polysaccharides as an advanced membrane filtration material. Nanocellulose is among the emerging materials of this century and several studies have proven its use in filtering microbes. Its high specific surface area enables the adsorption of various microbial species, and its innate porosity can separate various molecules and retain microbial objects. Besides this, the presence of an abundant OH groups in nanocellulose grants its unique surface modification, which can increase its filtration efficiency through the formation of affinity interactions toward microbes. In this review, an update of the most relevant uses of nanocellulose as a new class of membrane filters against microbes is outlined. Key advancements in surface modifications of nanocellulose to enhance its rejection mechanism are also critically discussed. To the best of our knowledge, this is the first review focusing on the development of nanocellulose as a membrane filter against microbes.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 668
Author(s):  
Salfauqi Nurman ◽  
Saiful Saiful ◽  
Binawati Ginting ◽  
Rahmi Rahmi ◽  
Marlina Marlina ◽  
...  

The development of membrane technology is rapidly increasing due to its numerous advantages, including its ease of use, chemical resistant properties, reduced energy consumption, and limited need for chemical additives. Polyurethane membranes (PUM) are a particular type of membrane filter, synthesized using natural organic materials containing hydroxy (-OH) groups, which can be used for water filtration, e.g., ammonia removal. Red seaweed (Rhodophyta) has specific molecules which could be used for PUM. This study aimed to ascertain PUM synthesis from red seaweed biomass (PUM-RSB) by using toluene diisocyanate via the phase inversion method. Red seaweed biomass with a particle size of 777.3 nm was used as starting material containing abundant hydroxy groups visible in the FTIR spectrum. The PUM-RSB produced was elastic, dry, and sturdy. Thermal analysis of the membrane showed that the initial high degradation temperature was 290.71 °C, while the residue from the thermogravimetric analysis (TGA) analysis was 4.88%. The PUM-RSB section indicates the presence of cavities on the inside. The mechanical properties of the PUM-RSB have a stress value of 53.43 MPa and a nominal strain of 2.85%. In order to optimize the PUM-RSB synthesis, a Box–Behnken design of Response Surface Methodology was conducted and showed the value of RSB 0.176 g, TDI 3.000 g, and glycerin 0.200 g, resulting from the theoretical and experimental rejection factor, i.e., 31.3% and 23.9%, respectively.


Author(s):  
Dong Suk Han ◽  
Kawsher M. D. Solayman ◽  
Ho Kyong Shon ◽  
Ahmed Abdel-Wahab

AbstractThis study investigated the Hg(II) removal efficiencies of the reactive adsorbent membrane (RAM) hybrid filtration process, a removal process that produces stable final residuals. The reaction mechanism between Hg(II) and pyrite and the rejection of the solids over time were characterized with respect to flux decline, pH change, and Hg and Fe concentration in permeate water. Effects of the presence of anions (Cl−, SO42−, NO3−) or humic acid (HA) on the rejection of the Hg(II)-contacted pyrite were studied. The presence of both HA and Hg(II) increased the rate of flux decline due to the formation of irreversible gel-like compact cake layers as shown in the experimental data and modeling related to the flux decline and the SEM images. Stability experiments of the final residuals retained on the membrane using a thiosulfate solution (Na2S2O3) show that the Hg(II)-laden solids were very stable due to little or no detection of Hg(II) in the permeate water. Experiment on the possibility of continuously removing Hg(II) by reusing the Hg/pyrite-laden membrane shows that almost all Hg(II) was adsorbed onto the pyrite surface regardless of the presence of salts or HA, and the Hg(II)-contacted pyrite residuals were completely rejected by the DE/UF system. Therefore, a membrane filter containing pyrite-Hg(II) could provide another reactive cake layer capable of further removal of Hg(II) without post-chemical treatment for reuse.


2021 ◽  
pp. 2143-2152
Author(s):  
Nahla Sh. Ajeel ◽  
Nada A. Fleeh ◽  
Matham A. Sultan

     This research was conducted to measure the levels of asbestos fibers in the air of some dense sites of Baghdad city, which were monitored in autumn 2019. Samples collection was conducted via directing air flow to a mixed cellulose ester membrane filter mounted on an open‑faced filter holder using sniffer with a low flow sampling pump. Air samples were collected from four studied areas selected in some high traffic areas of Baghdad city, two of them were located in Karkh (Al-Bayaa and Al-Shurta tunnel) and two in Rusafa (Al-Jadriya and Al-Meshin complex), then analyzed to determine concentrations of asbestos. Measuring of levels of asbestos fibers on the filters was carried out via using scanning electron microscope SEM together with  an energy dispersive X‑ray system (EDS). The results showed that the lowest level was recorded in Al-Jadriya intersection (0.0352 fiber/ml), while the maximum concentration was in Al-Bayaa (0.156 f/ml). Asbestos average concentration in the ambient air of the four studied areas was 0.0718 f/ml, which exceeded the standards of world health organization (WHO) for air which is equal to 0.0022 f/ml. This may be due to the presence of crowded traffic and the occurrence of industries near the city. Therefore, plans such as management of traffic, changing locations of industrial sites, and products substitution can be effective in minimizing the concentrations of airborne fibers.


Sign in / Sign up

Export Citation Format

Share Document