Tuning the molecular structure, separation performance and interfacial properties of poly(vinyl alcohol)–polysulfone interfacial composite membranes

2011 ◽  
Vol 368 (1-2) ◽  
pp. 26-33 ◽  
Author(s):  
Fubing Peng ◽  
Zhongyi Jiang ◽  
Eric M.V. Hoek
2016 ◽  
Vol 19 (4) ◽  
pp. 97-106
Author(s):  
Hai Le Tran ◽  
Minh Ngoc Duy Vuu ◽  
Quan Minh Hoang ◽  
Nguyen Thi Nguyen ◽  
Phong Thanh Mai

Crosslinked poly(vinyl alcohol) (PVA) composite membranes were synthesized by casting selective crosslinked PVA films on the polyacrylonitrile (PAN) porous substrates. The PVA films were prepared by in-situ crosslinking technique using four different crosslinking agents, such as glutaraldehyde, fumaric acid, maleic acid and malic acid. The separation performance in terms of permeation flux and separation factor of prepared membranes were evaluated for pervaporation dehydration of ethanol/water mixture of 80/20 wt% at 60 oC. The prepared membranes were also characterized by FTIR, SEM, swelling and sessile drop contact angle measurements. It was found that the chemical structure of the PVA membrane was changed via crosslinking reaction. The physicochemical properties (hydrophilicity and swelling degree) and separation performance of the prepared membranes were affected by the chemical structures of the crosslinking agents. Furthermore, there was a trade-off between permeation flux and selectivity of the resulting membranes. When the flux increased, the separation factor decreased. The results of this study contributed to enrich the data of the crosslinking reaction of PVA membranes, and expected to help researcher in suitable choosing crosslinking agent for producing pervaporation PVA membrane for dehydration of ethanol solutions.


PLoS ONE ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. e0228973
Author(s):  
Raymond Yeung ◽  
Xiaobo Zhu ◽  
Terence Gee ◽  
Ben Gheen ◽  
David Jassby ◽  
...  

2020 ◽  
pp. 152808372091334 ◽  
Author(s):  
Wen-Cheng Chen ◽  
Chia-Ying Ko ◽  
Kai-Chi Chang ◽  
Chih-Hua Chen ◽  
Dan-Jae Lin

Silver ions (Ag+) and silver nanoparticles (AgNPs) are effective antimicrobial agents that act against a broad spectrum of bacteria. The releasing quantitation of free Ag+ is exclusively responsible for the biological toxicity, while limiting the free Ag+ in AgNPs or in polymers would largely ease the conditions. In this study, the different concentrations of silver nitrate (AgNO3) in poly(vinyl alcohol) (PVA) and an optional preheat treatment on the spinning solution before electrospinning to form the Ag+/AgNPs/PVA fibrous membranes through electrospinning technology were investigated. The morphologies, AgNPs dispersity within the PVA matrix, and the sterilizations (UV irradiation and autoclave) for Ag+/AgNPs/PVA fibrous membranes were characterized. The antibacterial activities of Ag/PVA composite membranes combined with the in-house prepared light-cured resin were also investigated. Results showed that the AgNPs/PVA fibrous membranes with antibacterial capability can be produced with the addition of at least 5 wt.% of AgNO3 to PVA. The antibacterial activities of Ag content in the PVA matrix were increased in the high presence of Ag. Noteworthy, the antibacterial enhancing effect was observed for the spinning solution groups after preheating treatment at 100°C for 1 h. The result suggests that Ag/PVA fibrous membranes sterilized by autoclave hindered antibacterial effectiveness due to the significant particle size changes in the generation of large-sized AgNPs. Nevertheless, the direct application of UV light irradiation to Ag/PVA fibrous membranes preserves their active antibacterial profile against Staphylococcus aureus and Escherichia coli. We also demonstrated that these designed AgNPs/PVA composite membranes can equip the resin with an active antibacterial capability, could benefit from the prevented bacteria breeding in microleakages and thus further reduce the possibility for secondary caries.


Sign in / Sign up

Export Citation Format

Share Document