Thermal crosslinking of a novel membrane derived from phenolphthalein-based cardo poly(arylene ether ketone) to enhance CO2/CH4 separation performance and plasticization resistance

2019 ◽  
Vol 586 ◽  
pp. 306-317 ◽  
Author(s):  
Ruisong Xu ◽  
Lin Li ◽  
Xin Jin ◽  
Mengjie Hou ◽  
Liu He ◽  
...  
2020 ◽  
Vol 598 ◽  
pp. 117824 ◽  
Author(s):  
Ruisong Xu ◽  
Lin Li ◽  
Mengjie Hou ◽  
Jiajia Xue ◽  
Yuzhe Liu ◽  
...  

2016 ◽  
Vol 29 (1) ◽  
pp. 26-35 ◽  
Author(s):  
Yunwu Yu ◽  
Wenhao Pan ◽  
Xiaoman Guo ◽  
Lili Gao ◽  
Yaxin Gu ◽  
...  

Poly(arylene ether sulfone) (PES)–titanium dioxide (TiO2) hybrid membranes were prepared via solution blending method using TiO2 nanoparticles as inorganic filler. The chemical structure and thermal stability of the matrix polymer were characterized by proton nuclear magnetic resonance, Fourier transform infrared, differential scanning calorimetry, and thermogravimetric analysis. The crystal structure, morphology, mechanical properties, and gas separation performance of hybrid membranes were characterized in detail. As shown in scanning electron microscopic images, TiO2 nanoparticles dispersed homogeneously in the matrix. Although the mechanical properties of hybrid membranes decreased certainly compared to the pure PES membranes, they are strong enough for gas separation in this study. All gas permeability coefficients of PES-TiO2 hybrid membranes were higher than pure PES membranes, attributed to the nanogap caused by TiO2 nanoparticles, for instance, oxygen and nitrogen permeability coefficients of Hybrid-3 (consists of PES with 4-amino-phenyl pendant group and hexafluoroisopropyl (Am-PES)-20 and TiO2 nanoparticles, 5 wt%) increased from 2.57 and 0.33 to 5.88 and 0.63, respectively. In addition, the separation factor increased at the same time attributed to the stimulative transfer effect caused by the interaction of hydroxyl groups on the TiO2 nanoparticle and polar carbon dioxide molecules.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1287 ◽  
Author(s):  
Wenmeng Zhang ◽  
Shaoyun Chen ◽  
Dongyang Chen ◽  
Zhuoliang Ye

Sterically hindered (S)-1,1′-binaphthyl-2,2′-diol had been successfully copolymerized with 4,4′-sulfonyldiphenol and 4,4′-difluorobenzophenone to yield fibrous poly(arylene ether ketone)s (PAEKs) containing various amounts of binaphthyl unit, which was then selectively and efficiently sulfonated using ClSO3H to yield sulfonated poly(arylene ether ketone)s (SPAEKs) with ion exchange capacities (IECs) ranging from 1.40 to 1.89 mmol·g−1. The chemical structures of the polymers were confirmed by 2D 1H–1H COSY NMR and FT-IR. The thermal properties, water uptake, swelling ratio, proton conductivity, oxidative stability and mechanical properties of SPAEKs were investigated in detail. It was found that the conjugated but non-coplanar structure of binaphthyl unit endorsed excellent solubility and film-forming capability to SPAEKs. The SPAEK-50 with an IEC of 1.89 mmol·g−1 exhibited a proton conductivity of 102 mS·cm−1 at 30 °C, much higher than that of the state-of-the-art Nafion N212 membrane and those of many previously reported aromatic analogs, which may be attributed to the likely large intrinsic free volume of SPAEKs created by the highly twisted chain structures and the desirable microscopic morphology. Along with the remarkable water affinity, thermal stabilities and mechanical properties, the SPAEKs were demonstrated to be promising proton exchange membrane (PEM) candidates for potential membrane separations.


2007 ◽  
Vol 49 (5) ◽  
pp. 558-563 ◽  
Author(s):  
A. S. Volkov ◽  
Yu. A. Gorbatkina ◽  
I. Yu. Gorbunova ◽  
M. L. Kerber ◽  
S. N. Salazkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document